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ABSTRACT. Reliable lake level frequency distributions are a critical component of any compre-
hensive strategy for coping with Great Lakes water level fluctuations. However, statistical techniques
commonly used on riverine systems are inappropriate for large lake systems, due to the levels’ long-
term persistence and dependence on the prevailing climatic regime. To illustrate an alternative meth-
odology, we present a series of resampling analyses modeled after well-known bootstrap techniques
applied to 130 years of monthly Lake Erie water level records. The analyses show that lake level
exceedance probabilities should be conditioned on 1) length of planning horizon, 2) starting month of
Dplanning horizon, 3) initial lake level, and 4) climatic regime. Our methodology can be extended to
additionally consider storm and wind effects on levels, to incorporate levels data available for
discontinuous periods prior to 1860, and to develop other types of lake level statistics useful to
decision makers, such as duration and time-to-exceedance probabilities.

INDEX WORDS: Great Lakes, water level fluctuations, frequency distribution, statistical methods,

bootstrap.

INTRODUCTION

The Great Lakes are one of the most intensively
used freshwater systems in the world, serving navi-
gation, hydropower, irrigation, water supply, and
recreation interests, while providing important fish
and wildlife habitats. Due to their large surface
areas and relatively small outflow capacities, the
lakes fluctuate through a very small range of levels
compared to smaller lake or riverine systems (his-
torically, about 1.8 m [6 ft] from record lows to
record highs). In addition, changes in lake levels
are typically gradual from year to year. Thus, uses
of the lakes have generally evolved to accommo-
date a relatively narrow range of lake level condi-
tions. While Great Lakes uses are adapted to sea-
sonal fluctuations, extreme high and low water
events and rapid level changes pose major manage-
ment challenges. Reliable lake level probability dis-
tributions are a critical component of any compre-
hensive strategy for coping with Great Lakes water
level fluctuations. Such distributions permit con-
sideration of the risks associated with investment
decisions involving lake resources.

The wide variety of Great Lakes uses implies a
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need for a wide variety of statistics describing
potential lake level fluctuations. Shoreline devel-
opment interests are most concerned with instanta-
neous peak levels, since any inundation can cause
significant damage. Water intake design and oper-
ation is concerned not just with extreme levels, but
also with the expected duration of specific
extremes, especially at severe low levels. Because
peak hydropower demands typically don’t occur
concurrently with peak water levels, statistics
about expected durations at even moderate levels
are of interest as well. In addition, various Great
Lakes uses have different planning horizons.
Major public works may have design lifetimes of
50 years or longer. On the other hand, new marina
operations may have a critical planning horizon of
2 years or less, since the business may fail if
extreme conditions occur before financial reserves
have been accumulated.

Although Great Lakes water level measurements
are one of the longest North American geophysical
instrumental records, it is inappropriate to use
them directly to create probability distributions
based on techniques developed for riverine sys-



CONDITIONAL LAKE LEVEL STATISTICS 219

tems. Great Lakes levels are highly serially-
correlated due to the tremendous heat and mois-
ture storage capacities of the lakes and their
basins, respectively, and the restricted lake outlets.
In addition, historic lake level records reflect secu-
lar changes in climate, watershed hydrologic
response, and connecting channel hydraulics. Such
conditions violate assumptions of independent,
identically distributed events essential to tradi-
tional statistical hydrologic analyses. Improved
methodologies are needed for producing lake level
frequency distributions that consider periodic cli-
matic shifts, the long lag-response of the lakes to
meteorologic variability, and current hydrologic
and hydraulic conditions.

Attempts to address constraints in applying tra-
ditional statistical techniques directly to water level
records of other large lakes generally focus on
analyses of net lake inflows or their components
(Guganesharajah and Shaw 1984; James et al.
1984; Adams et al. 1985; Bowles and James 1985;
Wiche et al. 1986; Privalsky 1981, 1988). However,
direct application of these approaches to the Great
Lakes is complicated, because except for Lake
Superior, the largest water supply to each Great
Lake is outflow from its upstream lake; being a
direct reflection of lake level conditions, those out-
flows are subject to the same long-term persistence
as water levels. Because lake level changes reflect
long-term meteorologic variation, ideally, lake
level frequency distributions would be derived
from distributions of meteorologic variables, com-
bined with modeling of hydrologic and hydraulic
processes. However, such an approach requires a
long-term effort, since no applicable meteorologic
probability distributions exist for the Great Lakes
region at present, and existing models are not fully
developed for such use.

Many Great Lakes investment decisions cannot
wait for development of “ideal” lake level proba-
bility distributions. The U.S. federal flood insur-
ance program requires estimation of annual flood
probabilities (FEMA 1987) and affects a broad
range of shoreline development. The recent spate
of reports (Bishop 1987, Hartmann 1987, USACE
1988, SWRPC 1989) suggesting the potential for
future lake level variations, developed in light of
the extreme levels of the 1980s, reflects demands
for statistics that can be used now and that are
more reliable than those available previously.

This paper represents an attempt to develop
techniques for improved Great Lakes level proba-
bility distributions, that can be applied in a timely
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FIG. 1. Historic monthly mean Lake Erie levels at
Cleveland, Ohio.

manner to better guide Great Lakes investment
decisions over the near future. Our focus is on
using lake level records only; as Quinn (1990)
pointed out, there is a general view that existing
analyses haven’t sufficiently exploited the informa-
tion contained in historic levels records. We
present a series of resampling analyses modeled
after well-known bootstrap techniques, applied to
130 years of monthly Lake FErie water level
records. The probability distributions presented
herein are not intended to be used directly for
design, since there have been no adjustments to
historic levels for diversions, connecting channel
hydraulics, or lake outflow regulation. Rather, our
analyses are presented as an illustration of method-
ology, and to make clear the problematic implica-
tions of ignoring the physical realities of large lake
behavior.

METHODOLOGY

Our resampling analyses use a single continuous
130-year (1860-1989) record of monthly mean
water levels on Lake Erie, recorded at Cleveland,
Ohio. This record (Fig. 1) was thought to be
appropriate for three reasons. First, 130 years is
quite long for such a data record and its continuity
permitted a variety of methods to be used. Second,
Cleveland is located on the southern shore of Lake
Erie near the midpoint of the long east-west axis of
the lake and, hence, is much less subject to the
periodic water level extremes or seiches induced by
relatively short-term storm and wind events.
Third, Lake Erie levels were thought to have been
least subject of the five major Great Lakes to
human effects such as regulation and dredging
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over the period of record. Thus the data for analy-
sis are this set of monthly mean lake levels,
denoted L, i = 1-1,558.

The monthly lake level time series exhibits two
well known features. The first is a very strong posi-
tive correlation existing between levels near in
time. Lake levels are clearly not independent
events. Second, a major seasonal effect is present
with levels generally being highest in May through
July and lowest in November through January.
This reflects the seasonality of hydrologic pro-
cesses (basin runoff and lake evaporation) as they
respond to seasonal meteorologic conditions.
Additionally, a third feature, not immediately
apparent from the levels record alone, is the strong
positive relation between lake level and rate of dis-
charge from the lake. While an average water sup-
ply occurring at a low lake level causes the lake to
rise, that same supply occurring at a high level
results in a drop in levels.

These features suggest certain approaches to be
applied in the analyses. The first characteristic,
that the levels are strongly positively correlated,
suggests that we analyze not the levels themselves,
but their differences. Lake level differences from
month to month reflect more directly the net
effects of short-term meteorologic variability (via
over-lake precipitation, basin runoff, and lake
evaporation). We define a forward difference at
time i between levels L,,, and L, as A, = L,,,—L,.
This difference series has very small (<.005 in
absolute value) and nonsignificant (p>.1) auto-
correlations. Woodbury and Padmanabhan (1989)
used a differencing approach to circumvent the
long-term persistence of levels at Devils Lake,
North Dakota; they analyzed time series of incre-
mental storage differences based on annual lake
levels using ARMA models, and annual maximum
deviations from average annual levels using
extreme value theory.

The second and third features suggest a structure
of grouping the differences by month and level, as
illustrated in Figure 2. The range of levels is
divided into 10 intervals using 9 division points
0.1524 m (0.5 ft) apart. The A/’s are grouped by the
interval and month to which the corresponding L,
belong. The A’s occurring at or near the same lake
level would have been subject to similar effects of
attenuation or emphasis due to rate of discharge
from the lake. Similarly, A’s occurring in the same
portion of the annual meteorologic cycle would be,
in general, subject to similar effects of hydrome-
teorologic processes. The strong seasonal variation

Observations by Level and Month
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FIG. 2. Grouping of historical levels differences by
month and level, for the period 1860-1989.

in levels is evident in Figure 2. Gugansharajah and
Shaw (1984) used an interval approach in estimat-
ing probability distributions of annual minimum
10-day water levels for Lake Chad, conditioned on
initial lake levels. They designated 12 discrete
intervals of levels, each covering 0.5 m (1.64 ft).
Starting with the mid-point of each interval, in
turn, they used an autoregressive model of lake
inflows to generate multiple sequences of lake lev-
els, and ultimately determined the proportion of
occurrences of levels falling within each of the 21
intervals, for the specified starting condition.

The method chosen here to analyze the levels,
via their differences, is closely related to the “boot-
strap” method (Efron 1982). In perhaps the most
familiar form, one is given a sample X =
(x;,X,,. . .X,) of observations from a typically
unknown distribution, F(x), and a statistic, g(X).
The objective is to estimate some distributional
characteristic of g(X) such as its standard error,
S(g). The method is summarized as:

1. Fit the non-parametric maximum likelihood
estimate of F, F, which assigns mass 1/n at x,, i =
1,...,n. (Designate the data as the object of resam-
pling by recognizing the empirical sample distribu-
tion function as an estimate of the population dis-
tribution function.)

2. Draw, with replacement, a “bootstrap sample
from F: X* = {x%,. . .,x*) where x* are indepen-
dently and identically distributed according to F.
3. Calculate g* = g(X*); i.e., compute g(X*) from
the bootstrap sample.

4. Independently repeat steps 2 and 3 a large num-

bid
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ber, B, of times, getting bootstrap replications
g*,. . .,8%,

5. Finally, calculate the desired characteristic of g,
such as its estimated standard error,

B
{bz—:llg*b - B*]¥/(B - 1)}1/2

B
where g* = (X g*)/B.
b=1

In contrast with this illustration using S(g), the
most useful applications of bootstrap techniques
are typically found in situations for which analytic
results are essentially intractable or unknown.
Heuristic application of the bootstrap method to
the lake levels data proceeds with these steps:

1. Pick a starting level, 1,, and starting month, m,.
All subsequent operations will thus be conditional
on the selected starting level and month.

2. a) Randomly draw a A, from the set of A’s cor-
responding to 1, and m,.

2. b) Compute a new level, 1, = 1, + A, and step to
the next month, m, = m,(mod12) + 1.

3. Repeat steps 2a) and 2b) for 1,,, = 1, + A, and
m;,, = m(modl12) + 1, and i increments from 2 to
the number of months in the planning horizon of
interest. (For example, next draw a A, from the
1,,m, set of A’s and compute 1; = 1, + A, and m,
= m,(mod12) + 1. Continue this for the time of
interest, drawing 24 A’s for a 2-year planning hori-
zon, say, and finish with a set of 25 1/s).

4. Collect the statistics of interest for the set of 1,s.
(For example, the maximum of the 25 1;’s.)

5. Repeat steps 2 through 4 a large number, B, of
times. (In our example, this results in B maxima,
one from each iteration of the steps 2—4.)

The resultant collection of B resampling statis-
tics reflects the distribution of the desired statistic
computed on the B samples. Figure 3 diagrams the
construction of one of the B resamplings and
determination of the statistic of interest (here, the
maximum level achieved during the chosen plan-
ning horizon, conditioned on a starting level and
month). One may also take the minimum of the 25
levels to assess the distribution of minima under
the same conditioning. Note that the conditioning
which takes place in the choice of starting level, 1,
and month, m,, is constant over the B samples. In

Steps 2 through 4

max --------------J---;\

AV

months —>

---------------------------------------

(span)

FIG. 3. Schematic of resampling of lake level differ-
ences from levels intervals on the basis of month and
lake level. Solid line shows sequence of lake levels
resulting from one sampling replication (B = 1) over a
6-month period. Regardless of the length of the sam-
pling period, all sampling is thus conditioned on the
initial lake level and month.

the analyses which follow, we use B = 30,000; a
preliminary analysis indicated stable results with B
> 15,000.

As an example, Figure 4 shows the result of con-
ditioning on an arbitrary starting level of 173.97 m
(570.75 ft) in January, with a sampling span, or
planning horizon, of 1 year. Point A indicates that
approximately 300 of the 30,000 samples achieved
a maximum level of 174.57 m (572.75 ft) or above
during the 1-year span. Thus, Figure 4 shows a 1%
probability that levels will exceed 174.57 m (572.75
ft) over a l-year planning horizon, when the
monthly mean lake level at the start of the period is
at 173.97 m (570.75 ft). Point B indicates approxi-
mately 30 of the samples achieved a minimum level
of 173.40 m (568.9 ft) or below during the period.
Thus, for the specified conditional starting level,
there is a 99.9% probability that levels over the
next year will exceed 173.40 m (568.9 ft); alterna-
tively, there is a 0.1% probability that levels over
the period will fall below 173.40 m (568.9 ft). Note
that this example is for a 1-year planning horizon.
For other spans, the curves represent the probabil-



222 HERCHE and HARTMANN

1-Year Sequences

75 i

174 | ca—START LEVEL =

17397 m (87078 1 |

LEVEL(m)

3
LEVEL(f0)

# - Lees

01 001
PROBABILITY
FIG. 4. Example probability distributions for monthly
mean Lake Erie levels at Cleveland, Ohio, over a 1-year
planning horizon, conditioned on an initial January
lake level of 173.97 m (570.75 fO). A = lake level with

1% exceedance probability; B = level with 0.1% non-
exceedance probability.

ity that indicated levels will be exceeded at some
unspecified time during the planning horizon; they
do not represent annual exceedance probabilities.
Conditioning in this type of analysis corre-
sponds in kind to using exogenous variables in
regression models. Two conditioning factors have
been included in the sampling structure, namely
the seasonal and levels effects. The natural
sequencing of seasonal effects and the dependency
of a response (A) on an associated level essentially
dictate the structure of choosing elements (A’s) of a
sample sequence. The analyses which follow illus-
trate the effects of applying various kinds of condi-
tioning, as well as some interesting interactions.

RESULTS

Even without any consideration of conditioning,
differences in planning horizons can cause a strong
variation in maxima or minima. Figure 5 shows the
variation in four different periods, starting in Jan-
uary at 174.57 m (572.75 ft) and increasing in 6-
year steps from 1 to 7, 13, and 19 years. Two major
features are evident here. First, the effects of plan-
ning horizon differences weaken as the period
increases, and may become negligible for periods
of more than 20 years, depending on starting level.
The maxima are essentially unchanged beyond the
7-year planning horizon for this rather high start-
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FIG. 5. Example probability distributions for monthly
mean Lake Erie levels at Cleveland, Ohio, over 1-, 7-,
13-, and 19-year planning horizons, conditioned on an
initial January lake level of 174.57 m (572.75 f). The
planning horizons are distinguished by the solid, long-
dashed, short-dashed, and dotted lines, respectively.
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FIG. 6. Example probability distributions for monthly
mean Lake Erie levels at Cleveland, Ohio, over a 1-year
planning horizon, conditioned on initial levels of 174.57
m (572.75 fo), solid lines on initial levels of 173.13 m
(568.00 fo).
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FIG. 7. Example probability distributions for monthly
mean Lake Erie levels at Cleveland, Ohio, over a 10-
year planning horizon, conditioned on two different ini-
tial January lake levels. Dotted lines are conditioned on
initial levels of 174.57 m (572.75 ft), solid lines on initial
levels of 173.13 m (568.00 f?).

ing level. The changes in minima probabilities are
very large between the 1- and 7-year planning hori-
zons, but decrease rapidly as the planning horizon
extends beyond 13 years. In the example of Figure
S, the 1% non-exceedance probability lake level
for the 1-year planning horizon is about 0.76 m
(2.5 ft) higher than for the 7-year planning hori-
zon, and over 0.91 m (3 ft) higher than for the 19-
year period. Second, the marked asymmetry
between minima and maxima probability curves is
largely due to the high January starting level. This
occurs because at high lake levels, even above-
average water supplies can result in lake level drops
due to large lake outflows. Thus, few resamplings
of lake level differences within the high lake level
intervals of Figure 2 yielded lake level increases
and those that did occur were relatively minor.
However, many resamplings within the high levels
intervals yielded lake level drops. Unless condi-
tioned on the length of the planning horizon, the
likelihood of extreme conditions over short plan-
ning horizons will be overestimated; if lake levels
are currently extreme, the probability of extremes
of the opposite sort will be grossly overestimated.

Compare now, in Figures 6, 7, and 8 for 1-, 10-,
and 20-year planning horizons, respectively, the
minima and maxima probabilities with two rather
extreme starting levels of 173.13 m (568.0 ft) and
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FIG. 8. Example probability distributions for monthly
mean Lake Erie levels at Cleveland, Ohio, over a 20-
year planning horizon, conditioned on two different ini-
tial January lake levels. Dotted lines are conditioned on
initial levels of 174.57 m (572.75 ft), solid lines on initial
levels of 173.13 m (568.00 f?).
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FIG. 9. Example probability distributions for monthly
mean Lake Erie levels at Cleveland, Ohio, over a 12-
year planning horizon, conditioned on January and
June initial lake levels of 173.97 m (570.75 f¢). Solid
lines hare conditioned on a January start, dotted lines
on a June start.

174.57 m (572.75 ft). Responses are very sensitive
to starting levels for short planning horizons. For
the 1-year planning horizon of Figure 6, the 1%
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FIG. 10. Historic monthly mean Lake Erie levels at
Cleveland, Ohio, identified by the prevailing precipita-
tion regime, following Quinn (1981; personal communi-
cation, GLERL, 1990).

exceedance probabilities differ by over 0.91 m (3
ft), as do the 1% non-exceedance probabilities.
The probability distributions’ sensitivity to starting
levels diminishes as the planning horizon increases,
but is still notable even for 20-year periods. In Fig-
ure 8, the 1% non-exceedance probabilities differ
by about 0.15 m (0.5 ft), certainly significant for
some Great Lakes uses.

Probability distributions that are conditional on
the month in which they begin show an analogous
pattern of influence. In Figure 9, the higher maxi-
mum and minimum curves started at 173.97 m
(570.75 ft) in January when levels are generally
lower. The lower maximum and minimum proba-
bility curves started at the same lake level but in
June when levels are generally higher. As with the
preceding conditioning factors, the sensitivity to
the starting time weakens as the span increases.
Over 12-year periods, Figure 9 shows relatively
minor differences between 1% probability levels,
although differences are somewhat larger for lake
levels of greater probability.

The implications of Figures 5-9 are clear. Devel-
opment of a single general-purpose probability dis-
tribution for monthly mean lake levels is abso-
lutely inappropriate. Use of non-conditional
probabilities for short planning horizons of about
20 years or less will result in over-investment in risk
reduction measures. Probability distributions must
consider 1) the length of the planning horizon, 2)
the lake level at the start of the planning horizon,
and 3) the month (or season) of the start of the
period. As the planning horizon increases beyond

Observations by Level and Month
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FIG. 11. Grouping of historic levels differences by

month and level, for the combined wet climatic regimes
of 1860-1886 and 1942-1989.
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FIG. 12, Grouping of historic levels differences by
month and level, for the dry climatic regime of
1887-1941,

20 years, conditioning on these factors becomes
less important, but may still merit consideration
when initial levels are extreme and levels of the
opposite extreme are of concern.

Thus far, we have considered conditioning by
starting level and starting month, having incorpo-
rated by construction the effects of seasonality and
level-dependent outflow rates. Another factor that
strongly influences lake level extremes is that of
climatic regimes, i.e., decadal and longer periods
of relatively consistent meteorologic conditions.
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FIG. 13. Example probability distributions for
monthly mean Lake Erie levels at Cleveland, Ohio, over
a I-year planning horizon, conditioned on an initial
January lake level of 173.81 m (570.25 f©). Solid lines
represent no conditioning on climatic regime. Dotted
lines represent conditioning on a wet climatic regime,
long-dashed lines on a dry regime.
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FIG. 14. Example probability distributions for
monthly mean Lake Erie levels at Cleveland, Ohio, over
a 12-year planning horizon, conditioned on an initial
January lake level of 173.81 m (570.25 f¢). Solid lines
represent no conditioning on climatic regime. Dotted
lines represent conditioning on a wet climatic regime,
long-dashed lines on a dry regime.

As illustrated by Quinn (1990), the sequence of
annual water supplies, which directly reflects per-
sistent climatic conditions, is a critical determinant
of extreme Great Lakes water levels. This under-
standing formed the basis of analyses under the
on-going International Joint Commission Great
Lakes Water Levels Reference Study (I1JC 1989),
whereby 12-year scenarios of extreme meteorologic
conditions based on historic records were used
with conceptual models to develop scenarios of
lake levels more extreme than reflected by historic
levels records; no probabilities of occurrence could
be specified for the lake level scenarios, however.
The existence of distinct climatic regimes, with rel-
atively rapid shifts between them, is widely
acknowledged for the Great Lakes region
(Changnon 1987, Quinn 1981, Wiche et al. 1986).
For example, over the Lake Michigan basin, cloud-
iness has increased and temperatures have become
cooler with less intra-month variability since the
1960s, while precipitation has been consistently
higher since the 1940s (Changnon 1987).

Figure 10 depicts the division of the 130-year
Cleveland record into three segments, based on the
regimes identified by Quinn (1981; personal com-
munication, GLERL, 1989). The period prior to
1887 and the one following 1941 are classified as
high (or wet) regimes while the intervening period
is classified as low (or dry). For these analyses, the
observations from the two high regimes are pooled
and used as one regime. Figures 11 and 12 show the
numbers of observed lake levels in the two regimes,
classified by months and levels. The salient feature
of these figures is of course that the observations in
the high regime are grouped largely in the higher
water levels with complete absence of data at lower
levels in late spring and early summer. The low
regime data exhibit the complementary pattern
with data absent at higher levels, particularly in
September through February.

To condition on regime, one performs the same
analysis as before, but using data (the A’s arrayed
by level and month) from the regime in question.
Figures 13 and 14 show examples for 1- and 12-
year planning horizons, respectively, using three
data sets: the whole record, the high regime, and
the low regime. A central starting level of 173.81 m
(570.25 ft) in January was chosen for ease of com-
parison. The 1-year extremes from this central
starting level are all quite close, although the
curves from the higher regime are consistently
slightly above those from the low regime. For the
12-year planning horizon, the predicted extremes
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are radically different. The 1% non-exceedance
probabilities resulting from the wet and dry
regimes differ from that obtained using the entire
record by about 0.23 m (0.75 ft) and 0.15 m (0.5
ft), respectively. The apparent discontinuity in the
maxima probability distribution derived from the
dry regime shows the effect of data deficiency at
higher lake levels; as shown by Figure 12, for a dry
climatic regime, there are few lake level differences
at high level intervals from which to resample.

The difficulty in using lake level probabilities
conditioned on specific climatic regimes is know-
ing, a priori, what regime will exist over the plan-
ning horizon. There is, at present, no ability to
predict when climatic regimes will shift, or to
immediately identify whether a year that appears
to be “unusual” in the context of a prevailing
regime is just that (unusual) or is instead the begin-
ning of a new regime. However, as Figures 13 and
14 show, use of the entire historic record to deter-
mine level probabilities is not sufficient; Great
Lakes levels reflect climatic regimes, and those
regimes have different implications for potential
lake level behavior. Decision makers should con-
sider lake level probabilities for each regime within
their decision analysis framework, by weighted
combination of probabilities or some other
approach. For extremely long planning horizons
(e.g., 100 years for massive infrastructures, 1,000
years or beyond for lakeshore nuclear plant siting),
several climatic shifts might be expected; thus, use
of the entire historic record may be sufficient, or
more appropriately, additional conditioning on
regime behavior.

EXTENSIONS

The preceding analyses show that conditioning by
starting level, starting month (seasonality), and
wet or dry climatic regime all have important influ-
ences on predicted exceedance probabilities, espe-
cially in combination with each other. One exten-
sion of the methodology which may have
important applications is conditioning on various
types of lake level trends. It may be useful, for
short planning horizons, to condition resampling
on the basis of interannual lake level trends over
about 5 years, to reflect wetting or drying of basin
watersheds resulting from persistent meteorologic
conditions within a climatic regime (e.g., due to El
Nino effects). For longer planning horizons, con-
ditioning on trends over several decades may per-

mit consideration of climate changes, including
shifts among climatic regimes.

Fruitful application of trend conditioning will
require objective definitions of the trends, but with
sufficient generality that adequate data will be
available for resampling from each specified cate-
gory of conditioning. Objective definitions are
required for two reasons. First, analyses made
under a particular conditioning require each lake
level obtained by resampling to be identified under
that definition, in order to determine what cate-
gory will be subsequently resampled. Second,
thoughtful use of the results presumes the ability to
identify the condition extant at the start of the
planning horizon and estimate the conditions that
will prevail during the period. Such definitions for
various types of trends might make use of para-
metric or non-parametric smoothing or measures
of coherency such as the Hurst coefficient.

These same caveats pertain to conditioning by
levels and seasonality as well. Months and levels
are exemplars of objectivity, which is a strong rec-
ommendation for their use (as well as the availabil-
ity of data). It is likely, however, that factors may
be found which serve the same function with more
predictive power, but for which some objectivity in
definition may be sacrificed. Further work on sea-
sonality factors, alternative level-dependent group-
ings of differences, and alternative definitions of
lake level intervals is planned.

While the preceding analyses focus on using
monthly mean levels from a centrally located sta-
tion, our methodology is amenable to extension in
several ways. First, it is obviously desirable to
“overlay” the effects of shorter-term conditions
such as storm- or wind-induced wave activity and
seiche effects, particularly for predictions at other
locales. This requires using daily or hourly data
under parallel conditioning. Analyses of shorter-
term effects could then be combined with longer-
termm monthly mean data results to yield joint con-
ditional probabilities.

Second, data available prior to the historic
record used herein may be included, provided they
are complete enough to permit the necessary condi-
tioning. On Lake Erie, intermittent monthly mean
water level records extend back to 1819 (Tait 1983,
Bishop 1987). At a minimum, use of such data
requires two consecutive monthly levels and identi-
fication of the prevailing climatic regime, in order
to add the levels difference to the correct condi-
tional sampling category. This capability greatly
extends, in principle, the set of available data since
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large breaks in data continuity make standard
time-series analyses difficult to apply.

A potentially very powerful extension of our
methodology is in the range of available statistics.
The focus has been on the probability distribution
of minima and maxima of lake levels, for given
planning horizons, under various conditioning. It
is equally straightforward to derive other statistics
which might be even more useful to Great Lakes
decision makers. distributions of the time from the
start of a planning horizon that some specified lake
level is exceeded (“time-to-exceedance” probabili-
ties) would be helpful in developing workable con-
tingency plans, and then implementing elements of
those plans as lake level conditions (and thus prob-
abilities) change. Subsequent analyses using
updated levels data could be used to confirm pre-
vious analyses or suggest acceleration or postpone-
ment of scheduled efforts. Distributions of the
length of time a specified level is exceeded during a
planning horizon (“duration of exceedance” proba-
bilities) would be useful in developing optimization
plans to maximize benefits of lake use even during
moderate water level conditions (e.g., for hydro-
power production). In general, any statistic deriv-
able from a given water level record may be dis-
played in terms of its distribution, conditioned as
before by current starting level, climatic regime,
etc. Statistics tailored to the various needs of Great
Lakes decision makers could be produced, based
on the full extent of historic records and condi-
tioned on the current lake level status.

CONCLUSIONS

The implications of our analyses are clear. Devel-
opment of a single general-purpose probability dis-
tribution for monthly mean lake levels is abso-
lutely inappropriate. Probability distributions
must consider 1) the length of the planning hori-
zon, 2) the lake level at the start of the planning
horizon, 3) the month (or season) of the start of
the period, and 4) climatic regimes. For short plan-
ning horizons of about 20 years or less, lack of
consideration of the first three conditions will
result in over-investment in risk reduction mea-
sures. As the planning horizon increases beyond 20
years, conditioning on these factors becomes less
important, but may still merit consideration when
initial levels are extreme and levels of the opposite
extreme are of concern. Without explicit consider-
ation of climatic regimes, risks of extreme condi-
tions may be significantly over- or under-

estimated; the risk estimates may be especially
biased for planning horizons longer than a decade,
but the biases may be significant even for shorter
periods. Great Lakes levels reflect climatic
regimes, and those regimes can have much differ-
ent implications for potential lake level behavior.
Decision makers should consider lake level proba-
bilities for each regime within their decision analy-
sis framework, by weighted combination of proba-
bilities or some other approach. For extremely
long planning horizons (e.g., 100 years for massive
infrastructures, 1,000 years or beyond for lake-
shore nuclear plant siting), several climatic shifts
might be expected; thus, use of the entire historic
record may be sufficient, or preferably, additional
conditioning on regime behavior.

A few observations should be made on the fun-
damentals of the method presented herein. First,
resampling statistics do not in themselves provide
much perspective into the mechanisms or causative
structure of lake levels. No mechanistic modeling
is performed to reveal the interrelations of lake
levels with precipitation, runoff, evaporation,
winds, temperature, human-induced effects, or
other processes. Exogenous variables enter the
resampling analyses only through the condition-
ing, based on a priori knowledge of their effects
(e.g., grouping levels differences by lake level, on
the basis of known lake level-discharge relation-
ships). Research on these variables would be of
great benefit in refining the resampling analyses.
Second, the database of approximately 1,560
monthly mean levels (and differences), although
one of the longest contiguous geophysical records
extant for North America, is not really adequate
for the resampling analyses imposed on it, even
here. As illustrated by Figure 2, even considering
the full 130-year historic record, some lake level
intervals have very few observations available for
resampling; insufficient sample size becomes even
more problematic when climatic regimes are con-
sidered, as in Figures 11 and 12. It is highly desir-
able to expand the current historic record with the
noncontiguous levels data prior to 1860, to include
both periods which are similar to the current
record and those which record more extreme con-
ditions. Third, these analyses should be extended
to data from other stations and lakes for monthly
mean levels as well as daily and hourly levels, to
develop conditional lake level probabilities for dif-
ferent locales and time scales.

Resampling analyses modeled on the “boot-
strap” method offer an opportunity to use a much
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larger portion of available data than may be
accommodated by existing techniques. The ability
to refine probability distributions via conditioning
should improve their reliability. The scope of
application is increased as well by the ability to
tailor results to the specific needs of Great Lakes
users. Together these facilities may offer Great
Lakes decision makers much greater access to the
information contained in historic lake level records
and the results of water levels research.
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