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Abstract

Because satellite observations are synoptic, collected frequently, and highly resolved
on geophysical scales, they can be a valuable source of information for development and
application of numerical models. Data derived from satellite sensors may be used in
model evaluation studies, as well as for operational and prognostic updating of both
model state and forcing variables. Although satellite data are used routinely with many
types of operational atmospheric models, little work has been done to integrate satellite
data with models of aquatic systems. In this paper we develop and examine schemes
for combining daily images obtained by the Sea-viewing Wide Field Spectrometer (Sea-
WiFS) with a two-dimensional sediment transport model representing southern Lake
Michigan. We perform a forecasting study focused on a two-month period in spring
1998 when a large storm caused substantial amounts of sediment resuspension and hor-
izontal sediment transport in the lake. We find that data assimilation schemes improve
forecast root-mean-square-error (RMSE) by 40% over purely model-based approaches
and by 20% over purely data-based approaches.
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1 Introduction

Recent improvements in computer performance have led to increases in the complexity of
geophysical models. Similarly, improvements in data visualization methods have led to
increased emphasis on models with detailed spatial and temporal resolutions, the output
of which can be presented in dramatic graphical form. Both developments in modeling
have highlighted the importance of obtaining field data appropriate for evaluating and
improving complex, highly resolved models. This is true particularly in the Great Lakes,
because numerical models have been among the primary tools employed for understanding
and assessing these systems since the 1970s, when phosphorus-induced eutrophication was
the primary concern of lake managers.

Current generation models are based on grid scales of O(1)-km and run on hourly or
sub-hourly time steps, hence traditional ship-based surveys cannot collect data with either
the spatial or temporal density the models need for their support. High-frequency data can
be collected with instruments mounted on fixed moorings, but like ship-based surveys, these
are costly unless the spatial domain of interest is small. Satellite remote sensing, which can
provide information that is highly resolved in both space and time, is a promising source
of data that are better matched to the models’ spatial and temporal scales and that should
prove most valuable for model evaluation and development.

Of course, satellite methods are neither problem-free nor without serious challenges of
interpretation. Some of these difficulties can be overcome by limiting the application of the
observations to variables that are most directly related to the satellite measurements (e.g.,
surface temperature) and/or by taking advantage of temporal and spatial compositing to
extract meaningful signals from inherently noisy data. Indeed, a rich body of literature has
shown that valuable data can be obtained from satellite imagery, especially for studies of
regional-scale and seasonal processes (Brock and McClain, 1992; Uddstrom and Oien, 1999;
Behrenfeld et al., 2001).

Satellite observations can also be used to understand shorter-term and localized phe-
nomena. For example, we used a three-month time series of satellite images obtained from
the Sea-viewing Wide Field Spectrometer (SeaWiFS) sensor to study a rapidly developing
phytoplankton bloom in southern Lake Michigan (Lesht et al., 2002). Other researchers
(Hughes et al., 1998; Kostinoy et al., 2004) used high-frequency imagery to study tran-
sient events in the open ocean. Relatively little work, however, has been directed toward
integrating high-frequency, high-resolution imagery with high-resolution models of aquatic
processes. Such integration should be useful both as a quantitative measure of the models’
performance and for providing operational models with data for near-real-time assimilation
(Schwab and Bedford, 1994).

The purpose of this paper is to report on our exploration of methods for combining



satellite imagery with a high-resolution numerical model. More specifically, we discuss here
our integration of SeaWiFS data with a model originally developed for simulating sediment
transport in Lake Michigan. Understanding and predicting the movement of suspended
sediment is important in the Great Lakes, because many of the contaminants of concern
in these waters are associated with fine particles, and all of the major nutrient cycles
(carbon, nitrogen, phosphorus, and silicon) include significant particulate phases. The
complex biogeochemical models (Chen et al., 2004) being developed to assist in management
of the lakes reflect this fact and depend critically on accurate representation of sediment
transport processes. Even simple biogeochemical models of the Great Lakes have been
shown to be most sensitive to their parameterizations of sediment transport (Chapra, 1977;
Lesht et al., 1991).

Much work has been devoted to Great Lakes sediment modeling. Because data continu-
ity has been valued more than possibly fragmented information about spatial and temporal
patterns, and because time series are easier to manage than are the large three-dimensional
(3-D) data sets provided by satellites, sediment model validation studies have used time se-
ries observations made at single points rather than satellite imagery. On the other hand, sus-
pended sediments are highly reflective, and they are easily detectable in visible-wavelength
satellite images. Thus, the application of satellite data to studies of sediment transport in
marine and aquatic systems remains an active area of research.

The first well-known exploration of satellite imagery of Lake Michigan highlighted in-
triguing spatial patterns indicating complex current structures (Mortimer, 1988) but did
not attempt quantitative analyses. Other early studies in marine systems used very small
sets of data for limited purposes, probably because the requirements for dealing with the
satellite data exceeded the available computing capacity. For example, Puls et al. (1994)
compared three cloud-free Coastal Zone Color Scanner images of the North Sea with a
model calculation and concluded simply that their model did not successfully reproduce the
observed sediment distributions. As computer memory and storage technology advanced,
studies became more sophisticated and quantitative, but they still were often based on
small sets of satellite images and limited model calculations (Gerritsen et al., 2001; Ransi-
brahmanakul and Stumpf, 2002; Ouillon et al., 2004; Pleskachevsky et al., 2005). None of
these studies used satellite data either to evaluate the performance of the models as they
progressed in time or to examine the effects of incorporating past data into the model to
improve forecasts. These two applications are our primary focus here.

In Section 2 we describe the data and the numerical model, and in Section 3 we discuss
several concepts of forecasting and our approaches to image-model integration. Our results
are described in Section 4. In Section 5 we discuss the performance of the forecasts in

some detail and illustrate how the relationships between the forecasts and observed fields



provide insight valuable for improving the model and for understanding the limitations of
the data. We conclude that real-time and retrospective modeling of sediment transport can
be enhanced substantially by incorporating satellite imagery and that the data provided
by the satellites can be important both for constraining model results and for assessing the

choice of model parameter values.

2 Satellite Data and Model

2.1 Satellite Images

We concentrated our analysis on a 60-day time period spanning March-April 1998, when
a major sediment resuspension event occurred in southern Lake Michigan. An intensive
data collection effort, known as the Episodic Events Great Lakes Experiment (EEGLE;
http://www.glerl.noaa.gov/eegle/), that also began at this time is the source of the in
situ data we used in this work. The resuspension event has been described in several
papers resulting from the EEGLE project (Schwab et al., 2000; Eadie et al., 2002). For our
purposes, the points of importance are that resuspension events like the one in 1998 appear
to have significant influences on lake processes, the events are easily visible in satellite
images, and considerable effort has been devoted to developing models that simulate the
effects of the events on the lake’s biogeochemical function (Chen et al., 2004).

We used imagery from SeaWiF'§S, obtained from the Ocean Color archive of the National
Aeronautics and Space Administration (NASA) Goddard Space Flight Center
(http://oceancolor.gsfc.nasa.gov), in this study. We limited the data selection to overpasses
between 12:40 and 14:40 local time and converted the Level 1 images obtained from the
archive to Level 2 products by using NASA’s SeaDAS software (Baith et al., 2001). The
output products used in our analysis included remote sensing reflectance (Rgrg) in the
eight SeaWiFS bands (six in the visible and two in the near infrared), as well as several
auxiliary diagnostic variables. Our processing included an atmospheric correction (Gordon
and Wang, 1994), a modified cloud detection and masking value (albedo at 865 nm >
1.25%), and mapping onto a 2-km grid that was coincident with the model grid described
below. For our basic analysis we further screened the images to eliminate those having fewer
than 3500 cloud-free pixels among the 7347 pixels covering the southern basin. A total of

20 images, described in Table 1, passed this screening.

2.2 In Situ Data

Using satellite data to retrieve the values of geophysical variables can be an involved pro-
cess. The radiances received at the satellite must be corrected for the confounding effects

of the atmosphere and a functional relationship must be determined between the corrected



radiances and the variable of interest. Very often such relationships, or retrieval algorithms,
are developed empirically. Many so-called semi-empirical algorithms have been proposed
for retrieving suspended sediment concentration or total suspended material (TSM) from
satellite observations from a variety of sensors and bands (Mitchelson-Jacob, 1999). Several
groups (Myint and Walker, 2002; Binding et al., 2003, 2005; Budd and Warrington, 2004;
Chen et al., 2004; Warrick et al., 2004, and others) have published suspended sediment algo-
rithms specific for SeaWiFS. Using data from coastal Louisiana, Myint and Walker (2002)
explored several statistical relationships between suspended sediment concentration and ra-
diance in single SeaWiFS bands (555 nm and 670 nm) and determined that a quadratic
model based on the 670-nm band fit the data best. In their study of suspended sediments
in the Irish Sea, Binding et al. (2003) used similar statistical methods and also adopted
a quadratic model that related reflectance (rather than radiance) at 670 nm to suspended
sediment concentration. Similar work in the Great Lakes has been very limited. Budd
and Warrington (2004) used SeaWiFS observations to derive linear relationships between
suspended sediment and reflectance at 555 nm for both Lake Michigan and Lake Superior.
Chen et al. (2004) used much of the same data set to derive two log-linear relationships, one
for each year of their study, predicting suspended sediment concentration as an exponential
function of reflectance at 555 nm.

Because the parameter estimates by Chen et al. (2004) varied substantially across their
two study years, and because their fitted functions do not reproduce the reflectance when
TSM concentrations are high, we used in situ data collected during EEGLE to develop
a new calibration function relating suspended sediment concentration to remote sensing
reflectance. The locations of these EEGLE samples, along with the bathymetry of the
southern basin, are shown in Figure 1 (left). In total, EEGLE investigators made 65 near-
surface TSM measurements in March and April of 1998 and 1999. After a careful screening,
we removed three outliers and matched the remaining 62 measurements by location and
collection time with the nearest pixel of our SeaWiFS images (Figure 1, right). Twenty-six
of the samples, summarized in Table 2, were collected in 1998 during our study period and
are used in our forecast evaluation.

We tested several relationships between the SeaWiFS observations and TSM measure-

ments, including those described above, and found that the function
Rprs(555) = .0027 + .0537log(1 + .4739TSM), (1)

plotted in Figure 1, best represented the data. This function is linear at small values of

TSM and logarithmic at large values. We also use the inverse function,
TSM = 2.11 {exp[18.62 Rrs(555) — .05] — 1}, (2)

in the data assimilation schemes described Section 3.



2.3 Sediment Transport Model

Sediment transport models generally are designed to simulate the time-varying distribution
of particles in the water column and sediment bed as they respond to gravitational and
hydrodynamic forces. These models vary in complexity from those that yield a time series
of suspended sediment concentration at a single point (Hawley and Lesht, 1992) to those that
calculate the vertical profiles of several size classes of sediments both in the water column
and the bed as they change in both space and time (Lee et al., 2005). The model we use here,
which simulates the temporal and spatial evolution of the depth-averaged concentration of
a single sediment class as the lake responds to wind forcing, is of intermediate complexity.

The hydrodynamic models used in this study include a circulation model (Beletsky
and Schwab, 2001; Beletsky et al., 2003) that is based on the 3-D Princeton Ocean Model
(POM) and a surface wave model (Schwab et al., 1984). Bottom horizontal shear stress is
calculated as a linear function of independent stresses resulting from the full 3-D POM and
from the wave model. In our application, the horizontal flows are calculated by vertically
integrating the results of the 3-D model.

Several studies (Lesht and Hawley, 1987; Lesht, 1989) have shown that wave stress
dominates the current stress in the Great Lakes and that the primary role of the wind-
forced currents is advection of material resuspended from the bottom by the wave stress
(Schwab and Beletsky, 2002). Sediment resuspension is parameterized in the model in terms
of excess bottom shear stress, where the threshold or critical stress is given, as are the
parameters representing the sediment settling rate and resuspension rate. The model also
includes the dynamics of the sediment bed, representing the quantity of sediment available
for resuspension in terms of bed thickness at every grid cell. The model initial conditions
and parameter values are listed in Table 3.

Using this general framework, we write

dc dc dc
(d—i-’f))% = —Ua—x —Ua—y + s, (3)
ob s

where ¢ = ¢(z,y,t) and b = b(z,y,t) denote the vertically-averaged sediment concentration
and sediment bed thickness at location (z,y) and time t; d = d(z,y) denotes the local
water depth; n = n(z,y,t) the free surface fluctuation; u = u(z,y,t), and v = v(z,y,t) are
the water velocities; s = s(x,y,t) is the vertical flux, which incorporates resuspension and
settling; and p is the sediment density (Krone, 1962; Partheniades, 1962).

We assume bed-limited resuspension, so that s = min(s*,xb), where xk = 250 is the

density-based factor relating the bed thickness to the sediment mass and s* is the vertical



flux for a bed of unlimited thickness, defined as

s = —wye + € (1 - 1) 1(r > 7). (5)

Te

Here 7 = 7(z,y,t) is the bottom shear stress, w; is the settling velocity, 7. is the critical
bottom shear stress, € is the resuspension rate, and 1(-) is an indicator function that takes
the value one when the argument is true and zero otherwise. We implemented this model
on a 2-km grid representing Lake Michigan. The grid consists of 131 columns by 251 rows,
and a total of 14,458 water cells.

3 Methods

We consider the following forecasting problem: Given an initial condition, expressed here as
the spatial distribution of TSM on the 2-km grid, how do we best predict the evolution of the
Rpgs field in time? Because we are concerned with the relative accuracy of our forecasts, we
present most of our results in terms of the transformed variable log Rrs, and we emphasize
relative rather than absolute errors. We conducted similar analyses on several scales of the
response variable, including TSM and Rpgg, and determined that this transformation does
not materially affect the results (see Table 4).

Of course, forecasting methods vary considerably in complexity. Although we assumed
that the best forecasting technique would involve application of a physically based numerical
model driven by specified time series observations of external forcing mechanisms, we also
considered forecast methods that do not include lake dynamics. Our ultimate goal, again,
is to determine the extent to which concurrent observations of the state of the system,
provided by satellite measurements, can improve the accuracy of the resultant forecasts.
By using the satellite images for comparison with the forecasts, we can both explore and
quantify the attributes of the various forecast methods. Note that we distinguish here
between forecasting, in which we use the model and past data to predict a future state
of the system, and smoothing, in which we might look ahead in time and retrospectively

adjust the model trajectory to match a known future state.

3.1 Climatology

The simplest non-trivial (e.g., spatially invariant constant value) forecast one can make is
that the TSM distribution in the lake has spatial structure but does not evolve in time.
To establish a base case against which to compare the results of more complex forecasting
methods, we used data not included in our analysis to estimate the average lake log Rrg
field during March-April 1998. We defined the “climatologic” mean field as the average
of the log Rprg at each pixel measured by satellite during March-April 1999-2000 (the two



years following our study year). This field then was used as the forecast field at each
subsequent image time. Thus, the climatological forecast error represents the deviation of

the observations from the climatologic values.

3.2 Persistence

The next level of forecast complexity incorporates the available satellite data to update
the climatologic mean. Like the climatological case, the forecast does not account for
either lake or sediment dynamics; the state variable value at every pixel remains fixed
until another observation is available. In this scheme, after initializing the system with
the climatologic values, we set the forecast value at each pixel equal to the most recent
cloud-free satellite observation at that location. The forecast errors in this case represent
the differences between sequential observations. Thus, errors may be interpreted in terms

of the “persistence” of the state variable in time.

3.3 Pure Numerical Model

We also calculated forecasts based entirely on the sediment transport model without data
updating. This scheme provides a base case against which to compare the forecasting
schemes that incorporate both the model and data. For the pure model forecasts, we ran
the full model forward from the fixed initial conditions given in Table 3, forcing it with
the meteorological wind fields interpolated from observations (see Beletsky et al., 2003),
to simulate the entire modeling period. At each image time point, the forecast errors are
based on the differences between the observed satellite data fields and the modeled fields
at that time.

3.4 Modeling with Data Assimilation

Each of the forecasting methods described above relies on either the physical model or the
satellite data, but not both. By combining these two sources of information, we might hope
for a substantial reduction in forecast errors, though this is not necessarily the case. If both
the model and data were badly in error, combining them would merely confound the prob-
lems. Adding bad data to a good model would diminish the value of the model; similarly,
using a bad model with good data still would yield unreliable forecasts. Many methods
have been developed for combining models and data, though often without recognition of
the implicit assumption that both model and data provide some reasonable representation
of the system of interest. Generally known as data assimilation (Kalnay, 2003), the meth-
ods are intended to capture the best of both approaches, though implementation varies

considerably from application to application.



Our general assimilation scheme incorporates the data sequentially into the model fore-
casts in a conceptually simple manner. In all cases, we initialize the assimilation by setting
the model TSM and sediment bed thickness fields to the constant values given in Table 3.
We then run the sediment transport model forward with the prescribed meteorological forc-
ing until the first image time (282 hours after initialization). We use Egs. (1) and (2) to
convert between TSM and log Rprs. Subsequently, we repeat the following steps for each

image:

1. Convert the modeled TSM field to log Rgs.

2. Compute the forecast error as the difference between the image and model values.

3. Update the modeled log Rrg field by using the assimilation scheme being tested, and
convert the model field back to TSM.

4. Run the model forward to the next image time.

The algorithm above provides a sequence of one-image-ahead forecasts. The one-ahead error
is calculated from the differences between each image and the corresponding forecast. We
also determined k-image-ahead forecast errors by running the model with updates to image
1 and then running ahead without updates to the end of the T-image series, calculating the
forecast error at every image i1+ k for 1 < k < T —i. Because the results of the two methods
did not differ substantially, we discuss only the one-image-ahead results here.

Note that the number of pixels included in the forecast error calculation (Step 2) depends
on the completeness of the image and that our image screening guaranteed that at least
3500 pixels were used. Also note that to minimize the potential effect of model spin-up
time on the comparison among forecast methods we did not use the first image (hour 282)
in the error analysis. Because the satellite images do not directly inform us about changes
in the sediment bed, we do not update the sediment bed thickness at Step 3. Long-term
mass conservation is not required in the model, however, because in reality new sediment is
introduced into the lake by shoreline erosion and direct deposition during the course of the
year. Because the model includes gravitational settling, some of the changes in the modeled
suspended sediment mass introduced by the updating eventually result in changes in the
bed thickness.

We focus here on the results obtained from two update schemes: direct insertion and
kriging. Certainly, many other assimilation schemes are in common use (see Kalnay, 2003),
but these two depend only on past data and are appropriate in the pure forecasting mode

that we are testing.



3.4.1 Direct Insertion

Conceptually, the direct insertion method is easy to describe: We “insert” the satellite
data values into the numerical model whenever observations occur. In other words, at
a given image time, the forecast values at the cloud-free locations are replaced with the
corresponding satellite values, while the remaining forecast values are left unchanged. The
advantage of this approach is its conceptual and computational simplicity. During the
update, the state variable at any location takes the value of the observation made at the
same location. Thus, the computational cost is proportional to the number of observations.
On the other hand, the approach can lead to artificial discontinuities in the updated field
when the satellite images are incomplete and the time between updates is long. As we will
see in Section 5, this may occur along the boundaries of cloud-covered areas or where a
forecast-data mismatch occurs. Note that the persistence forecasting procedure (Section

3.2) is equivalent to the direct insertion method without the lake or sediment dynamics.

3.4.2 Kriging

To reduce or avoid spatial discontinuities in the results, it may be desirable to replace the
model forecasts with completely updated fields rather than with the partially updated fields
that may be used in direct insertion. One method of producing a completely updated field
is to interpolate the observations to estimate new values at every grid cell. Kriging-based
approaches (see, for example, Cressie, 1993) provide a method for spatial interpolation
that is optimal if one can properly specify the covariance among the observations and the
forecasts. The covariance function may be based on analysis of the data fields or may be
pre-specified, depending on the application. Given a set of data and a covariance function,
the so-called kriged values are the best linear, unbiased estimates of the variable values at
all locations.

At each image time, we represent the observed data by
y’ =Hy/ +e, (6)

where y° is the m x 1 satellite data vector, y/ is the n x 1 model forecast vector, e is the
m X 1 forecast error vector (all expressed in units of log Rrg), and H is an m X n matrix
with jth row given by h; = (0,...,0,1,0,...,0), where the position of the 1 indicates which
component in the forecast vector corresponds to the jth observation.

Under the kriging model in Eq. (6), the error e subsumes all possible sources of un-
certainty in the forecasts and the observations, including errors in the numerical model,
misspecification of the calibration function, errors in the atmospheric correction algorithm,

and satellite sensor and geographic displacement errors. The kriging model is intended to
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account for any spatially correlated forecast errors that result from the unknown uncertain-
ties expressed by e. For our analysis, we assume the error vector e is random with mean
p and covariance defined by the function covle(s), e(s’)] = C(d; 6), where e(s) and e(s’) are
the errors at spatial locations s and s/, d = ||s — §'|| is Euclidean distance, and 0 is a set of
covariance parameters.

For the analysis in Section 4, we assume that the errors have mean p = 0 (i.e., the

forecasts are unbiased estimates of the observations) and the covariance function
C(d;0) = o?exp(—d/\) k,(d), (7)

where @ = (02, \,r) is the parameter vector, o2 is the theoretical variance of the forecast
errors, A is the range or distance scale typical of the covariance between points, and k,(d)
is the correlation function k,(d) € [0, 1] proposed by Gaspari and Cohn (1999, Eq. 4.10),
which equals zero for distances beyond r. This correlation function eliminates very small
values of the covariance function for point combinations where d is large. Typically, we
choose 7 to be small, so that the intra-site covariance is set equal to zero for most pairs
of locations. As we shall discuss further, this reduces the computational cost considerably.
The covariance function in Eq. (7) was chosen after experimenting with a number of other
functions, including various members of the Matérn family (see Stein, 1999), various non-
stationary and anisotropic covariance functions, and those that included a measurement
error term. However, using these other functions did not substantially improve the overall
forecast performance in terms of log Rgg.-
Given our model for the forecast errors, the kriging update step proceeds as follows. Let
3 denote the n X n covariance matrix for the errors, with elements given by ¥;; = C(d;;;6),
where d;; = ||s; — s;|| are the distances between the model gridpoints. The updated field
y* is then given by the formula
y" = y/ +Ke, (8)

where K = SH/(HXH')~! is the n x m matrix of kriging weights. Direct calculation of
Eq. (8) is computationally demanding, as it requires solving a system of order m, which
is quite large in our application (m > 3500). To alleviate this problem, we perform the
update with an efficient conjugate gradient algorithm (see Appendix) that exploits the
gridded nature of the data and the assumption of a sparse covariance matrix (since r is
chosen to be small). The result of Eq. (8) is a complete field, y*, that matches the data
y° at the observed locations and is continuous over the entire domain. Note, however, that
if we assume that the forecast errors are spatially uncorrelated (A = 0), then the updated
field will match the forecasts, y/, at the unobserved locations; in this case the results are
equivalent to those produced by the direct insertion approach.

11



4 Results

We applied the forecasting methods described above to SeaWiFS data collected in March-
April 1998. As noted above, this time period included a major resuspension event in
southern Lake Michigan. Strong (20 m/s) north winds blowing along the long axis of the
lake for several days in early March 1998 generated waves at the south end of the lake
that exceeded 6 m in height. When the storm passed and the sky cleared on March 12,
satellite images showed a region of high reflectance, interpreted as newly resuspended and
eroded sediments, extending along the entire southern coastline of the lake (approximately
300 km). Subsequent satellite images collected over the next several weeks showed both
along- and cross-shore transport of the suspended sediment, corresponding to the general
counterclockwise circulation pattern in this part of Lake Michigan (Beletsky and Schwab,
2001). Other smaller events later in March and in early April added to the sediment burden,
especially near the shore. By the middle of April, the water column was almost clear of
suspended sediment, and the minimum Rgg values were at or below 1% for the rest of the
month, especially in the offshore area.

In the ideal case, the forecasts would perfectly match the data at each point in space
and time. In practice, of course, we must consider the effects of systematic errors in both
the model and data, as well as random errors that might result from factors like poor
or inconsistent registration of the satellite images or misspecification of the TSM/Rpgg
calibration function. We attempted to account for the data and forecast uncertainty by
calculating the errors associated with various linear combinations of the data (e.g., areal
averages of blocks of neighboring pixels and spatial differences or gradients in different
directions). We found that most of these were uninformative relative to the pixel-by-pixel
errors. When broken out by region (Figure 1), however, the east-west gradients, calculated
for each pixel pair by subtracting the west pixel value from the adjacent east pixel value,
showed evidence of model bias, which is discussed in Section 5.

We characterized the results of the forecasting methods statistically in terms of bias
and root-mean-squared error (RMSE). Let Y;; denote the function of the satellite data (i.e.,
pixel value, block average, gradient) at time ¢ and location j, f/tj the predicted value, and

N the number of observations used to compute the statistic. We then defined

. 1 - 1 A
Bias = ﬁ%jmj—m) and RMSE = N;(Yﬁ—m)z.

Table 4 summarizes these statistics for the one-image-ahead forecasts.

12



4.1 Climatology

The error statistics listed in Table 4 show that the climatological forecast performs poorly.
The RMSE across the 19 images is only slightly smaller than the overall standard deviation
of the observations for log Rrg, and it is larger than the RMSE values for the other forecast
methods tested. When compared with the 26 in situ samples (Table 2), the climatological
forecasts are more variable, and their mean is 60% below the observed mean. The problem
with the climatological forecast is illustrated in Figure 2, which shows the results obtained
by using the persistence method (presented in more detail below). The top row of the figure
depicts the retrieved satellite data from the first six images in our data series. The middle
row shows the forecast fields at each image time and the bottom row shows the differences
between the two. Because the persistence method does not include lake or sediment dy-
namics, the first forecast shown (middle row, column 1) is simply the climatological mean
determined from the 1999-2000 data. Even though the climatological field shows increased
sediment concentrations near the coasts in the southern basin due to spring resuspension
events that occurred in 1999 and 2000, the sediment concentrations are much smaller than
those observed in 1998. As a result, the errors in the first forecast (bottom row, column 1)
are substantial. Because the climatological forecast is constant in time, the same forecast
field (middle row, column 1) is used for every one of the subsequent images. Only when the
high sediment concentrations associated with the March 1998 event are reduced by settling
and advection do the errors associated with the climatological forecast fall to levels near

Z€ero.

4.2 Persistence

The persistence method, which incorporates the satellite data without lake or sediment
dynamics, substantially reduces the forecast errors. The RMSE value for log Rpg is ap-
proximately 40% lower for forecasts using persistence than for the climatological forecasts
(Table 4). With respect to the in situ samples, the persistence method has the smallest bias
of the methods considered, but a relatively large RMSE for TSM. The persistence forecasts
are updated by using the last set of satellite observations. As Figure 2 shows, the updated
forecasts (e.g., middle row, column 2) are calculated by replacing the prior forecast values
(middle row, column 1) with the available data (top row, column 1). Not surprisingly, the
magnitude of the errors depends on the time interval between the observations and the
completeness of the data set used for updating. Examination of the error images (bottom
row) shows, for example, that because much of the east coast of the lake was cloud covered
at hour 282, the forecast for hour 283 (next available image) assigned the climatological
values (middle row, column 1) to these pixels. Because fewer pixels along the east coast

were cloud covered at hour 283 and also had log Rrg values higher than the corresponding
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forecast values, the errors along the east coast are large and positive (row 3, column 2).
The importance of including lake dynamics in the forecasts is clearly shown by the
persistence forecast errors at hour 379 in Figure 2 (bottom row, column 3). In the 96 hours
between the second and third observations, the highly reflective area on the eastern side
of the lake has both changed shape and moved north. Because the persistence forecast
does not include dynamics, it cannot represent this movement, and the error image shows a
positive error at the new location of the reflective area and a negative error at its previous
location. We note that such negatively correlated errors may cancel out when images are
averaged over time, which suggests a possible limitation of model-satellite comparisons that
are based solely on the long-term statistical distributions of state variables. We avoid this

limitation with the image-by-image analysis reported here.

4.3 Pure Numerical Model

Figure 3 shows the forecast results obtained by using the pure model. Although the model
was initialized to spatially constant conditions and is based on the spatially uniform and
nominal (though realistic) sediment transport parameters listed in Table 3, it reasonably
reproduces the general sediment concentration patterns we see in the observations. In
particular, the pure model does very well at representing the long, narrow band of sediment
running up the east coast and also suggests the westward offshore transport of sediment
seen in the images at hours 522 and 546.

This apparent qualitative success is not reflected in the error statistics (Table 4), how-
ever. Though it performed better than the climatological forecast, the overall errors associ-
ated with the pure model forecast are positively biased and have substantially larger RMSE,
on all the response scales, than those for the persistence forecast. Much of the error results
from the tendency of the pure model to predict wider bands of suspended sediment along
the coasts, as well as its understandable failure to simulate the large localized area of high
reflectance that appears in the first image and dominates many of the subsequent scenes.
The fact that the pure model tends to spread the sediment band beyond the limits sug-
gested by the data also is reflected in the in situ sample statistics; the high bias results from
the prediction of lower values than are observed, and the lower RMSE indicates that the
forecast errors are smaller than those for the climatology and persistence forecasts. Some of
these problems might be alleviated by incorporating a more complex sediment resuspension

model or by improvements in the hydrodynamic circulation model.

4.4 Assimilation - Direct Insertion and Kriging

The primary difference between the two assimilation methods used in this study is that

kriging allows us to update the entire field at each image time, rather than limiting the
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update to the possibly discontinuous set of available pixels used in direct insertion. As
noted above, the two methods are equivalent when the range parameter () in the covariance
model, Eq. (7), equals zero. Although the two methods differ conceptually, their forecast
error statistics presented in Table 4 for the two methods are very similar and we discuss them
together. Both reduce the RMSE in log Rrs by approximately 50% relative to climatology
and approximately 40% when compared to the pure model.

One of the goals of data assimilation is to adjust the model forecasts to agree better
with new observations and provide more accurate predictions going forward. We would
expect, for example, that the model’s tendency to predict wider sediment bands than are
observed along the coasts would be mitigated when the forecasts are adjusted to reflect the
narrower features typical of the data. Similarly, the problem associated with the model’s
failure to simulate the localized offshore area of high sediment concentration that appeared
on March 12 would be resolved in the subsequent forecasts by the insertion of the March
12 observations during the update step.

The additional step (analysis of the image field being used for update) required for the
kriging method is illustrated in Figure 4. Rather than update the forecasts (second row)
with the data (top row) at only those pixels for which we have data, as would be the case
for direct insertion, under the kriging method we first use Eqs. (6)-(8) to create an analyzed
field (third row). The analyzed field is then run forward in time by using the numerical
model to create the forecast for the next image (e.g., row 2, column 3, is the forecast based
on the updated field shown in row 3, column 2). Note that since our choice of covariance
model assumes no measurement error, the direct insertion and kriging updates are the same
at pixels for which we have observations. This point is important for understanding why

the direct insertion and kriging results are so similar for these data.

5 Discussion

One goal of our analysis was to use the time series of high-resolution observations pro-
vided by the satellite to validate the performance of the model. This type of model-data
comparison is useful for gaining insight into how well the important physical processes are
represented in the model, as well as for model “calibration” or “tuning” and for parameter
sensitivity studies. One way to examine the model performance is to isolate the processes
represented in the model and determine how they influence the model’s success in repro-
ducing the observations. Table 5 shows the results of such an experiment, in which we used
direct insertion assimilation to test each of the eight possible combinations of the three
model components. The results for the persistence forecast, which is equivalent to direct
insertion assimilation without the physical model, are shown for comparison.

Adding the resuspension process alone slightly reduces the variability of the forecast er-
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rors but increases the error bias. The higher bias (data minus forecast) is due to the addition
of sediment to the water column by the resuspension process without a compensating loss
mechanism. When settling is included in the model, the bias is reduced to near zero, and
the variability of the errors is reduced further, suggesting that the settling and resuspension
parameter values listed in Table 3 are within a reasonable range. The converse situation,
when settling is added alone, is highly biased but in the opposite direction. The positive
bias reflects the steady loss of material from the water column by settling between update
steps. As would be expected, this bias, though still positive, is reduced substantially when
advection is added to the settling. The error variability, however, is not much different from
that for the case when settling and resuspension are included without advection.

The error variability is reduced substantially when advection is combined with resus-
peunsion, indicating the dominant role that local resuspension plays in accounting for the
variability in the observations. The large bias, of course, is again the result of adding ma-
terial without providing for a counterbalancing loss mechanism. Both the bias and RMSE
are reduced to their final values when settling is added in the complete model.

We could, in principle, use the bias and RMSE calculations to adjust the sediment
model parameters to some set of optimal values. Indeed, we experimented with different
sediment bed thicknesses, settling velocity, and resuspension rate values before choosing
the set listed in Table 3. To be most useful, however, we also would have had to include a
spatial variation in all of these parameters, something we were not prepared to pursue in
this study. Our aim was to explore assimilation methods rather than to perform a model
calibration exercise (Lee et al., 2005), so adding spatial variability to the parameter values
remains a problem for future work.

Analysis based on the whole-basin results allows us to assess the overall performance of
the model. Others have commented on the the steep gradient in reflectance associated with
the edge of the near-shore resuspension feature, which generally is about 10 km wide (Eadie
et al., 1996; Rao et al., 2002). Therefore, evaluation of the model’s ability to reproduce this
feature is also of interest. We find that the pure model tends to predict wider (~25 km)
near-shore zones of high reflectance and smaller gradients than are seen in the satellite data.
To examine this further, we used the differences between adjacent pixels in the east-west
direction to estimate the horizontal gradients in the forecast and observed fields and to
quantify the ability of the different forecast methods to reproduce the observed gradients
(Table 6). Because we expect much more horizontal homogeneity (small gradients) in the
offshore areas of the lake and gradients of opposite sign on the west and east coasts, we
divided the analysis into three spatial regions (shown in Figure 1), in which the coastal
areas were defined as including all pixels with depths shallower than 75 m.

Of the forecasting methods, the two assimilation techniques provide the best gradient
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forecasts overall, with bias improvements over the pure model of approximately 70%, 65%,
and 95% for the west, offshore, and east regions, respectively. The climatology gradient
forecast was quite good, particularly in the west and offshore areas. This success is explained
by recalling that the climatology forecast (see middle row, column 1, of Figure 2) is based
on the average of all satellite observations made during March and April of 1999 and 2000.
Because the nearshore sediment resuspension events are more or less annual phenomena,
the general features of these events will be reflected in the climatology. Two of the general
features captured by the climatology, the relative homogeneity of the offshore water and
the steep gradients, are exactly those we would expect to be reproduced by an accurate
model. The dynamics of circulation and sediment transport in Lake Michigan’s southern
basin display less annual variability along the western shore than along the eastern shore,
where northward and southward flowing currents converge (Beletsky and Schwab, 2001).
This increased variability accounts for the larger errors in the east region.

Higher bias values indicate that the observed gradients are larger than the modeled
ones. This is illustrated in Figure 5, which shows the forecast results and observations
for three transects along the southern basin. Because Rpg increases near the shore and
the gradients are defined as east minus west, the sign of the bias is negative on the west
shore and positive on the east. Larger bias values indicate “flatter” forecasts relative to the
observations. This result implies that the pure model tends to advect too much suspended
sediment offshore, accounting for the small forecast gradients. The kriging and direct inser-
tion assimilation schemes tend to reduce the bias by forcing the model to reset the gradients
to more reasonable values, although longer times between updates bring the assimilation
forecast values closer to the pure model values.

To further illustrate the forecast behavior along the coasts, Figure 5 also shows the
model and assimilation forecasts near the coasts, along with data obtained by satellite
and from EEGLE. The EEGLE data include both in situ samples and TSM measurements
made by using a phytoplankton survey system (PSS). This system, described by Liebig et al.
(2006), consists of a sensor package that changes depth as it is towed through the water at
a relatively slow speed. The PSS thus provides a nearly continuous measure of the sampled
variables through the water column for the length of the transect. The sensor package
includes an optical particle counter that measures bulk light attenuation values. These are
converted to TSM by using the method described by Winkleman et al. (1998). Figure 5
shows the pure model and assimilation forecasts for an hour within the PSS sampling period
(St. Joseph and Muskegon transects) or the time period required to collect the grab samples
(Chicago transect), the PSS data (St. Joseph and Muskegon), and the satellite data nearest
in time to the other data. The satellite data are displayed both as values along the transect

and as excerpts from the images that include the transects. In the case of the Chicago
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transect, the nearest satellite data follow the water column observations by about three
days. For the Muskegon transect, satellite images were available about three days on either
side of the PSS data. Along the St. Joseph transect, the nearest satellite data precede the
model forecasts and other observations by about 4 hours. The image collected at hour 522
was clear for all three transects. To illustrate the evolution of the nearshore features, we
also show the hour 522 satellite data with the St. Joseph and Chicago transects.

The flatness of the pure model forecasts near the coasts is evident in all the transects
shown in Figure 5. The assimilated forecasts are steeper, though they do not generally
equal the gradients seen in the data. The satellite values agree well with the in situ samples
and PSS values, though one has to view this agreement carefully, because both the PSS
and satellite data were calibrated with data from the same set of in situ samples. The
agreement between the satellite data and insertion forecast at St. Joseph reflects the fact
that the satellite data were incorporated into the forecast at hour 379. In this particular,
example the major differences between the insertion and model forecasts are seen in the
region more than 10 km offshore. The TSM values estimated by the insertion forecast drop
steeply and match the grab sample and PSS values, but the pure model forecast remains
relatively constant, underestimating the observed gradient. A similar situation is seen in
the Muskegon transect, where both the satellite data and PSS indicate a sharp drop-off in
TSM beyond 10 km. Although the steep gradient is not so clear in the insertion forecast,
we must consider that this forecast was last updated at hour 379, about three days before
the PSS and grab sample collection and about five days before the next image. During that
time, the insertion forecast will tend to move toward the pure model upon which it is based.

We had expected that kriging would improve upon direct insertion by smoothing the
forecast fields in a way that captured the observed covariance of the observations. Our re-
sults, however, show that kriging reduces the forecast errors only minimally. One reason for
this is that we assumed no measurement error so that the updated fields for direct insertion
and kriging are identical at the cloud-free pixels. Also, as noted above, we used a very short
correlation length scale (A = 2) for kriging, which implies that only forecasts within a few
pixels of cloud-free data are affected by the update step. Although we experimented with
different covariance models, including ones that were locally anisotropic, none substantially
improved the forecast results. This is a consequence of our assumption (Eq. 6) that the
forecast errors are unbiased (i.e., have a mean value of zero). Thus, the kriging would tend
to underpredict higher values in coastal regions, where cloud cover often obscures the im-
ages. We also found that using an error model that included a constant bias did not reduce
the forecast error. Conceivably, one could construct a more complex model error function
for use in an anisotropic and adaptive kriging procedure, but such an effort is beyond the

scope of this paper.
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One of the challenges associated with using satellite data is that the images are often
incomplete and fragmented. Although our initial screening was intended to ensure that we
began with fairly complete images, our results will be affected by discontinuities introduced
by cloud boundaries and retrieval failures. Each of our assimilation methods produces a
complete field at the update step. In the case of direct insertion, obscured or missing
pixels are set to their last forecast value, which may be quite different from the value
in a neighboring good pixel. Although kriging replaces the obscured pixel value with a
weighted function of the nearby good observations, discontinuities in the updated fields
are reduced only slightly, because the range parameter (A) is small. Unfortunately, the
prevailing southwesterly winds over southern Lake Michigan tend to result in formation of
cumulus clouds over the eastern shoreline. Thus, this region, which also tends to have the
highest variability in TSM, is more often obscured than other regions, and the errors in the
gradient forecasts along the eastern shore are increased as a result.

The overall performance of the assimilation can be assessed by comparing time series of
the forecasts obtained by using the pure model with those obtained by using direct insertion.
Figure 6 shows these results for three near-shore stations around the southern basin. In
addition to the forecast time series, we also have plotted the satellite data used in the
assimilation, satellite data that were not used in the assimilation because the images from
which they were extracted did not pass our screening, and data from the in situ sampling.
The dotted portion of the black line shows the pure model forecast before any updating
with satellite data. The assimilation forecasts diverge from the pure model forecasts after
the first update at hour 282. Note that the assimilation forecasts are not nudged toward
the observations but are obtained by running the model forward from the update time with
only the initial conditions modified by the assimilated data. We see, for example, that
at station J45 the assimilation at hour 379 requires the water column concentration to be
reduced substantially. This relatively low concentration is confirmed by the grab sample
collected at hour 376 and by the subsequent two satellite observations, the first of which was
not included in the assimilation. After hour 522 the assimilation model forecasts a rapidly
increasing sediment concentration, which again is confirmed by the satellite observation
at hour 570. The pure model also forecasts an increase in concentration during this time
period, but one of much lower magnitude. Finally, the pure model and assimilation forecast
converge late in the record, after a prolonged period with little or no sediment resuspension.

The results shown in Figure 6 and Table 5 provide insight into both the importance of
the various modeled processes and the values of the model parameters. Because we have
not adjusted the model parameters, both the pure model and assimilation forecasts respond
in the same ways to the forcing shear stress. The advective flows are also the same in both

forecast schemes. Thus, differences between the two forecasts must result from differences
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in the amount of available sediment and the suspended sediment concentration fields that
are advected between pixels. The results in Table 5 show that advection is the single most
important process for reducing the forecast error of the model. We already have noted
the tendency of the model to transport too much material offshore. The difference in the
forecast at Station J45, for example, occurs because the assimilation scheme keeps more

material inshore and available for northward advection.

6 Summary and Conclusions

This paper reports a study of forecasting sediment concentrations in Lake Michigan by
combining a 2-D sediment transport model with data obtained from a sequence of SeaWiF'S
satellite images. We considered a number of different forecasting methods, representing
purely data-based approaches (climatology and persistence), a purely physical-model-based
approach, and data assimilation approaches that combine the model and satellite data
sequentially. To evaluate the methods, we determined the forecast errors for two different
quantities: pixel-by-pixel log Rrgs values and gradients. The data assimilation approaches
improve forecasts by 20% over persistence approaches and by 40% over purely physical-
model-based approaches.

We demonstrated that incorporating a time series of satellite images into a simple
sediment transport model substantially improves forecasts of sediment concentrations in
southern Lake Michigan. We see no reason why similar methods cannot be applied to other
coastal regions where modeling and forecasting of sediment transport are of interest. Data
availability need not necessarily be a limitation. Although we limited our original set of
satellite images to reduce the effects of cloud contamination, we still had 20 good images
spanning the 60-day study period, with an average of 5400 southern-basin pixels each, with
which to work. This level of temporal and spatial data density would not be available from
any other source.

A number of directions for future research remain. First, we would like to incorporate
different sources of data into our assimilation scheme. As discussed earlier, we have available
water samples and PSS measurements of TSM. We also have high-frequency time series of
water currents available at 11 locations in the southern basin, and it would be natural to
consider data assimilation schemes that combine these data with the hydrodynamic model.
Presumably, this would result in improved advection fields, which could then be used to
improve predictions of sediment concentrations. In a further step, the satellite, in situ, PSS,
and current meter data could be used in a combined data assimilation scheme with a coupled
hydrodynamic-sediment transport model. However, because the in situ measurements are
sparse in space, careful construction of the kriging covariance model would be required.

Second, the methods used here could be extended to incorporate parameter estimation
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for both the sediment transport model and the kriging covariance model. For example,
the parameters could be chosen to minimize forecast RMSE or by using formal statistical
methods such as maximum likelihood estimation. Third, it would be interesting to provide
smoothed (retrospective) estimates of the sediment field over the modeling period. In con-
trast to the sequential methods described here, this would produce sediment fields without
jumps at the observation times. These fields could be used as input to the biogeochemical
models that have been developed for the lake. Finally, in addition to point forecasts, we
would like to provide associated measures of uncertainty. The ensemble Kalman filter and
its variants (Evensen, 1994; Tippett et al., 2003) provide a natural method for obtaining

uncertainties, and their application for this purpose is the subject of our current research.
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Appendix: Preconditioned Conjugate Gradient for Kriging
The kriging formula Eq. (8) can be rewritten as
y'=y/ +TH'Q e,

where e is the m x 1 forecast error, and Q = HXH’ is the m x m forecast covariance
matrix at the observed locations. The calculation is carried out in three steps: (1) Solve
Qz = e. (2) Compute w = XH'z. (3) Compute y* = y/ + w. The last two steps are
straightforward: Step 2 involves a sparse matrix-vector multiplication, and Step 3 requires
vector addition. Step 1 is more involved, as it requires solving a large system of order m.

We propose a variational method to solve the system, in which we define the function

1

f(Z) = §ZIQZ - Z,ea

and let z be the minimizer of f(-). A preconditioned conjugate gradient (CG) algorithm
is used to perform the minimization. In the CG method, we use circulant embedding to
compute matrix-vector products efficiently via the fast Fourier transform. The computa-
tional complexity for each CG iteration is O(7 logy 1), where 7. > 2n1no is the order of the
circulant matrix, and nq; = 131 and ny = 251 are the dimensions of the modeling grid in

our application.
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Table 1: Summary of satellite log remote sensing reflectance (log Rgs) values for all 20

images used in the forecast study.

March 1998 Images

April 1998 Tmages

Date Hour m Mean Min Max Date Hour m Mean Min Max
3/12 282 5398 -3.40 -4.28 -1.77 4/4 834 7092 -3.72 -4.53 -1.95
3/12 283 5491 -3.36 -3.97 -1.55 4/5 859 6601 -3.68 -4.45 -1.99
3/16 379 4580 -3.32 -3.97 -1.95 4/11 1003 3685 -3.54 -4.41 -1.94
3/21 498 5414 -3.53 -4.15 -1.89 4/12 1026 6548 -3.54 -4.33 -1.87
3/22 522 6600 -3.49 -4.22 -1.91 4/17 1146 6587 -3.72 -548 -1.89
3/23 546 5646 -3.45 -4.48 -1.88 4/18 1171 3563 -3.71 -5.07 -1.97
3/23 547 6291 -3.43 -4.63 -1.89 4/19 1194 3905 -3.61 -4.60 -1.89
3/24 570 7079 -3.52 -4.53 -1.92 4/23 1290 6800 -3.80 -4.54 -2.02
3/26 618 4176 -3.31 -4.22 -1.80 4/27 1387 3929 -3.88 -4.31 -2.16
3/29 691 4146 -3.33 -3.92 -1.91 4/28 1410 4633 -3.80 -4.60 -2.00

Total: 54821 -3.43 -4.63 -1.55 Total: 53343 -3.70 -5.48 -1.87

Table 2: Summary of near-surface total suspended material (TSM) measurements during
March-April, 1998.

Date Hour Stat TSM Date Hour Stat TSM
3/16 373 J10  32.87 4/10 976  M45 1.90
3/16 379 J73 1.29 4/24 1310 RI10 6.19
3/16 383 J45 1.84 4/24 1318 DWS  0.89
3/16 383 J30  13.04 4/25 1323 A4 2.31
3/17 398  G30 1.52 4/25 1341  J40 1.22
3/17 400 G10 34.21 4/25 1343  J20 4.54
3/18 424  C10 11.55 4/26 1344  J10 4.29
3/18 425 C30 0.99 4/27 1382 A3 10.24
3/18 427  C45 2.83 4/27 1384 G10 10.51
3/19 450 M110 1.16 4/27 1387 G20 1.92
3/19 453  M45 4.89 4/27 1391 A2 7.76
4/5 840 J30 4.00 4/28 1395 Al 26.42
4/6 888 M110 1.10 4/28 1398 R10 15.60
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Table 3: Initial conditions and parameter values for the sediment transport model.

Parameter Symbol Value
Initial bed bo 1 mm
Initial TSM o 0.01 mg/L
Settling rate W 2.5 x 10° m/s
Resuspension rate € 100 kg/m? /s
Critical shear stress Te 0.30 N/m?

Table 4: Summary of the one-image-ahead forecast bias and root mean squared error
(RMSE) for satellite log Rgs, Rrs and TSM, and for in situ data. The bottom row shows

the mean and standard deviation for the observed data.

Satellite Data In Situ
log RRS RRS (%) TSM TSM
Method Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Climatology 0.346  0.489 1.10 1.97 1.08 2.85 4.75  9.73
Pure model 0.092 0.413 0.30 1.63 0.45 2.54 3.19  8.50
Persistence -0.022  0.299 -0.07  1.37 -0.07  2.43 1.74  9.07
DA-insertion -0.025 0.238 -0.03  1.03 0.09 1.85 2.26  7.35
DA-kriging -0.036  0.237 -0.06 1.01 0.06 1.79 1.93  6.90
Observed -3.570  0.496 3.28 230 211 3.31 7.89  9.60
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Table 5: Summary of the one-image-ahead log Rrgs forecast bias and RMSE for the direct
insertion approach with different combinations of the sediment model components (advec-

tion, settling, and resuspension).

Model Components Bias RMSE
Null -0.022  0.299
Settling 0.040  0.348
Resupension -0.032  0.294
Settling, Resuspension -0.003 0.286
Advection -0.038  0.277
Advection, Settling 0.018  0.282
Advection, Resuspension -0.057  0.254

Advection, Settling, Resuspension -0.025 0.238

Table 6: Summary of the one-image-ahead forecast bias and RMSE for the east-west gradi-

ent of log Rrg. The bottom row shows the mean and standard deviation for the observed

gradients.
West Offshore East
Method Bias RMSE Bias RMSE Bias RMSE
Climatology -0.008 0.186 0.009 0.089 0.027 0.225
Pure model -0.075  0.222 0.003 0.103 0.043 0.231
Persistence 0.000 0.271 0.001 0.131 0.016  0.307
DA-insertion -0.023 0.214 0.001  0.095 0.002 0.216
DA-kriging -0.019 0.211 0.001  0.090 0.002 0.214
Observed -0.104  0.217 0.012  0.088 0.068 0.232
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Figure 1: Southern Lake Michigan water depths and in situ data. Left panel: Bathymetry
of southern Lake Michigan (where blue is shallower water, and red is deeper water), three
spatial regions, and locations of the 1998-1999 in situ measurements. Right panel: 62
matched sediment and reflectance measurements and fitted with Rrg-TSM function.
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Figure 2: Results for the persistence forecasts at the first six image times. Top row: satellite

data; middle row: persistence forecast; bottom row: forecast error (data minus forecast).

Gray pixels indicate cloud-covered regions.
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Figure 3: Results for the pure model forecasts at the first six image times. Top row: satellite
data; middle row: pure model forecast; bottom row: forecast error (data minus forecast).

Gray pixels indicate cloud-covered regions.
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Figure 4: Results for the kriging forecasts at the first six image times. Top row: satellite
data; second row: forecast; third row: updated field; bottom row: forecast error (data

minus forecast). Gray pixels indicate cloud-covered regions.
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Figure 5: Forecasting results for the pure model and direct insertion methods along three
transects. Satellite, in situ, and phytoplankton survey system (PSS) data during the same
time period are also plotted. The inset images show the satellite data at the nearest two

cloud-free image times, and the transects are indicated by red line segments.
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Figure 6: Time series of the pure model and direct insertion forecasts, along with satellite
and in situ data at three monitoring stations (see Fig. 1). The black solid line is the pure
model forecast; the blue solid line is the direct insertion forecast; the black dashed line is
the forecast for both methods, which are identical until the first assimilation time (hour
282); and the blue dashed line is the shift from the forecast to the update value for the
direct insertion approach. The closed circles (satellite data) were used in the assimilation,

while the open circles (satellite data) and squares (in situ data) were not.
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