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A numeric method for analyzing global parameter sensitivity about afixed point in parameter space for
differential equation models Is presented. The method is suitable for large-scale. multiresponse Systems
which may not be in steady state. By using a quadratic model, the relationship between several global
response characteristics and parameter perturbations is examined. Sensitivity relationships are defined
with both backward elimination regression model selection procedures and eigenval ue-eigenvector analy-
ses. An example of the method is given using an ecosystem model consisting of 14 coupled differential

equations.

INTRODUCTION

Differential equation models are useful tools in describing a
variety of complex systems, having applications in such fields
as economics, medicine [Jacquez, 1972], biology [McNaught
and Scavia, 1976], and ecology [Park et al., 1974; Scavia et al.,
1976: Thomann et al., 1975]. At present, the primary use of
such models isthat of prediction. Input (or driving) variables
are perturbed and resulting system: behavior observed. Model
validity is usually defined in terms of predictive capability
[Aigner, 1972]. Because many of the mathematical relation-
ships used in defining the differential equation system are
based on extant scientific principles, knowledge of the system
may also be gained by examining the system under internal
change, i.e.; changes of the parameter values of the mathemati-
cal constructs.

Tomovic [1963] defines several sensitivity coefficients based
on the sensitivity equation, a differential equation relating the
change in response with a change in the parameters. For
nonsteady state systems the sensitivity coefficient is a continu-
ous function of time. The usefulness of the method depends on
the ability to reformulate the system in analog terms or pro-
vide some analytical results for the solution to the sensitivity
equation. For many large-scale models this is not feasible.
Steinhorst and Gustafson [1975] determine sensitivity by pa-
rameter perturbation and an analysis of variance. Such an
approach assumes additive normal error and obscures the
continuous relationship between the parameters and the objec-
tive criteria. Banning [1974] and Klejjnen [1975] discuss a sensi-
tivity method applied to the driving variables of a stochastic
simulation model.

This paper will present a method to quantify overall param-
eter sensitivity relationships with numeric techniques. It will
describe an application of empirical model buildingin alinear
regression framework and eigenvalue-eigenvector canonical
analysis to evaluate parameter changes and system response.
The method is not dependent on either an analytic solution to
the differential equationsor aformulation to an analog model.
It is specifically designed for multiresponse systems.

Copyright © 1978 by the American Geophysical Union.

Paper number 7wW0637.
0043-1397/78/017W-0637$03.00

METHOD

The method is basically to determine some objective criteria
for al responses integrated over the primary variable. usually
time. Parameters are perturbed from a given parameter set
(driving variables being held constant), and new objective
criteria determined. The objective criteria are defined as dis-
tance measures of the resulting perturbed response from that
response obtained from the given parameter set. The relation-
ship between the parameters and the objective criteria is then
evaluated using a quadratic model.

The differential equation model may be formulated as

Fi= i@, x(t),y. 1) i=1,2 ¢ (1

where ¢ is the number of responses (compartments), », =
dy,/dt, 6 is the vector of parameter values, Y is the vector of
response variables, x(¢) is the vector of driving variables, and ¢
isthetime. Theintegrated form of the response will be given as

v = g0, x(1), ¥, 1) i=1.2,-,¢ (2)

and the response at the given parameter set as
yi*=g0% x(0).y, 1)  i=12 ¢ (3)

In most cases, the analytical solution, g,{ ). is not known and
(2) and (3) must be represented by sets of discrete points over
time. The spacing of these discrete points should be such that
an adequate representation of the behavior of the responses
over time 1s made Thegrid should be the same for al respon-
ses or a bias will be introduced into the objective criteria
Usually the grid is easily made because (3) is extensively stud-
ied before any sensitivity analysisis done.

The parameters 0 are systematically perturbed from their
given values 8%, and (1) isintegrated over a given time frame.
Three values are used for each parameter: the given value and
+10% change from the given value. This results in 3” per-
turbations, where p is the number of parameters to be exam-
ined. The actual percentage perturbation used in theanalysisis
dependent on the quantity of interest, i.e., the sensitivity of the
system to parameter changes. Too large or too small a change
may miss important features of the response surface; therefore
each system must be dealt with individually. A 10%change has
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TABLE 1. Canonical Analysis for Primary Production Parameter Sensitivity Analysis
Eigenvalue TOPT TMAX 010
Stationary Points
Objective 1 19.04 34.39 1.76
Objective 2 19.61 3431 1.83
Given 20.0 35.0 1.9
Eigenvector
Objective 1 1954.59 0.1348 —0.0096 0.9908
—15.35 0.9895 —-0.0517 -0.1352
0.62 —-0.0525 —0.9986 =0.0025
Objective 2 62606.99 0.1392 —0.0068 0.9902
-751.93 0.9903 —0.0028 —-0.1392
15.68 0.0018 -0.9999 -0.0071
proven to be successful for the ecosystem model used in the ay /2 ayp/2
example.
The formulation of objective criteria that compare the given A= Rz
and perturbed simulations is of prime importance. A simple
sym Opp

sum of squares approach is not feasible because observed
values of the model responses often differ by orders of magni-
tude. The following objective criteria were examined:

[ n * g

O = Z |}’u *}'me| (4)
i=1 J=1 Yiy
[ ;3 * _ 2

Ogp = Z 2 (yU ‘yUk) (5)
=1 j=1 Yij

where k is the perturbation k = 1,2, - - -, 3, p is the number of
parameters examined, ¢ is the number of compartments, n is
the number of observations for each response, y,* is the jth
observation for the ith response for the given parameter set,
and y,, is the jth observation for the ith response for the kth
perturbed parameter set. Objective criterion | (equation (4)) is
an estimate of the integral absolute percentage difference, and
objective criterion 2 (equation (5)) is an estimate of the in-
tegral squared percentage difference. From the form of the
objective criteria it is clear that sensitivity is being defined with
respect to a given point in the parameter space,

Equation (1) is solved for the perturbed parameter points
and the objective criteria calculated. The relationship between
the objective criterion and the parameter values is then exam-
ined by a quadratic model given by

0=0,+ 30+ 0'Ab (6)
ﬁ' = (ﬁll 621 L ﬁp)
0" = (6,6, -, 0,)

Such a model is equivalent to a second-order Taylor series
approximation to the functionality between the differential
model (1) parameters and the objective criterion. The estima-
tion of 8,, 3. and A of (6) may be done by any standard least-
squares program.

The analysis of the fitted surface (6) proceeds along two
different but complimentary paths. A canonical analysis is first
used to examine the fitted equation (6). By the usual differenti-
ation techniques the stationary points of (6) are given as

8, = —~A"'3/2 ™
and the estimated response at this stationary point by
Gy = By + 0,'3/2 (8)
Equation (6) in canonical form is
6= 6o+ Mwi® + Agwp® + o0+ Aewy? ®)

where ), are the characteristic roots (eigenvalues) of A, w = M
(8 — 8,), and M is the matrix whose rows are the normalized
eigenvectors associated with the eigenvalues of A. Since A is
real and symmetric, the eigenvalues ), are all real, and if A is
of rank p, then p eigenvalues exist.

The characterization of the stationary point (7) is accom-
plished by inspection of the eigenvalues of (9). Clearly if all
eigenvalues are positive, then a move away from 0, results in a
higher value of the objective criterion and 6, then represents a
minimum. Similarly, if all eigenvalues are negative, then 8,

TABLE 2. Canonical Analysis for Decomposition Parameter Sensitivity Analysis

Eigenvalue TOPT TMAX Q10
) Stationary Points
Objective | 22.50 56.47 1.69
Objective 2 22.27 48.56 1.61
Given 25.0 50.0 6
Eigenvector
Objective | 3398.08 0.0651 -0.0075 0.9978
—8.59 0.9707 —0.2311 —0.0651
0.90 -0.2311 -0.9729 0.0078
Objective 2 -2091.31 —0.1355 0.1961 09712
214.39 —0.9846 0.0825 —0.1541
103.71 -0.1103 -0.9771 0.1819
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TABLE 3. Estimated Models for Primary Production Parameter
Sensitivity
Standard
Parameter Coefficient Error F to Remove
Objective |
TOPT —=1767.1 270.4 42.7
Q1o -17399.9 2598.9 44.8
(TOPT) 20.4 6.4 10.1
(TOPT)(Q10) 525.9 45.3 134.8
(Q10)? 1924 4 640.7 9.0
Objective 2
TOPT —29959.1 3360.6 79.5
o110 —550184.4 >10000.0 29.6
(TOPT)(Q10) 17457.3 1762.2 98.1
(Q10)? 61568.1 24922.0 6.1

These are estimated models for (6) using the stepwise backward
elimination technique. The F to remove value was used lo test
significance of the parameters in the model.

represents a maximum. Although the stationary points (7)
should represent a minimum, in practice the eigenvalues will
often be mixed in sign. Such a mixture is usually indicative of a
saddle point. The first qualitative measure concerning the fit of
(6) is that even though a saddle point may be obtained, the
stationary point (7) should lie close to the given parameter set.
If not, then the fitted equation is of little value in examining
sensitivity.

If the eigenvalues are now ranked from largest to smallest,
the influence of the w; and hence 0 can clearly be seen. The
largest eigenvalues have the greatest effect on the objective
criteria, and the 8, or combination of 6, having the greatest
effect on the objective function can be determined by in-
spection of the associated eigenvectors.

The examination of the eigenvalues and eigenvectors of 4
give a qualitative indication of the sensitivities of the parame-
ters 0. In the example to be discussed here the sensitivities of
the parameters are clear because the eigenvalues differ by
orders of magnitude. In other cases the determination is not so
* easy, and a statistical approach must be used.

If we assume that deviations from the model (6) are inde-
pendent and normally distributed with constant variance, then
model fitting in a linear regression framework may be used to
determine those parameters 8 that contribute significantly to
the fitting of the objective criterion and are hence the most
sensitive in equation (1). A backward elimination procedure is
well suited for this purpose. In this procedure, variables (i.e.,
elements of § and A) are successively removed from the model
(3) according to some preselected probability level. The pa-

TABLE 4. Estimated Models for Decomposition Parameter
Sensitivity
Standard
Parameter Coefficient Error F to Remove
rToer —-716.1 176.4 16.5
Q10 —10670.3 2594.7 16.9
(TOPT)(Q10) 442.6 103.4 18.3

These are estimated models for objective 1 and (6) using the stepwise
backward elimination technique. F to remove value was used to test
significance of the parameters in the model. The model fit by objective
2 is not satisfactory with the full model having F(9, 17) = 1.58. There
were no significant variables (P > 0.05).
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Fig. 1. Primary production parameters for interaction plot.

rameters B remaining in the final reduced model are those that
significantly explain variations in the objective criterion and
may be judged as the most sensitive parameters.

EXAMPLE

The method developed here was applied to a lake ecosystem
model [Scavia et al., 1974; Park et al., 1974] describing the
open-water zone of Lake George, New York. This model
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Fig. 2. Decomposition parameters for interaction plot.
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Fig. 3. Primary production parameters for residual histogram.

consists of 14 coupled nonlinear differential equations with
over 150 parameters. To determine the utility of the method,
two small parameter sets were analyzed independently. One set
describes the temperature effect on primary production and
the other the temperature effect on decomposition. In both sets
the temperature parameters are the upper lethal temperature
TMAX, the optimal temperature TOPT, and the slope of the
suboptimal process rate curve Q10. These parameters were
chosen because of a detailed study of this temperature con-
struct [Scavia and Park, 1976]. Equation (1) was integrated
over a l-yr period with a grid size of 5 days. The given
parameter values about which sensitivity is measured were
known to produce results consistent with ecological theory
and available data [Scavia and Park, 1976].

The stationary points obtained from (7) all lie close to the
given values (Tables 1 and 2). The associated eigenvalues are
mixed in sign indicating that the stationary points are not
unique minimums. With the exception of objective criterion 2
with decomposition parameters, the largest eigenvalue differs
by several orders of magnitude from the others (Tables 1 and
2). By examination of the eigenvector transformation to origi-
nal coordinates, it is seen that the effect of TMAX is an order
of magnitude smaller than TOPT or Q10. TOPT and Q10 are
similar in the magnitude of their effects on the objective cri-
teria. Also the crossproduct of @10 and TOPT is seen to have
a large effect.

Under the appropriate error assumptions the reduced model
given by backward elimination confirms the results from the
canonical analysis (Tables 3 and 4). The fit for objective crite-
rion 2 for decomposition is not statistically significant. The
crossproduct of Q10 and TOPT, representing interactions, is
significant, The effect of Q10 and TOPT is seen to be com-
pensatory (Figures 1 and 2). This compensatory effect is sup-
ported by theoretical considerations [Scavia and Park, 1976].
Examination of the residuals (Figures 3 and 4) reveals no

serious departure from normality although objective criterion
I with decomposition may represent a uniform distribution.
This uniform distribution will not greatly affect the F tests for
it is nonsymmeltric distributions which have the greatest effect
on the stated probability level of the F test.

DiscussionN

The proposed method obtains global parameter sensitivity
results consistent with known relationships. It should prove
useful in examining model constructs and parameters where
theoretical conclusions are not available. For the parameters
of the example, the objective criteria of normalized absolute
deviation provide a better fit to a quadratic model than a
normalized sum of squares. Both criteria should be calculated.
The cost of these calculations is minimal in comparison with
the amount of computer time necessary to integrate the differ-
ential equations, and the degree of consistency between results
provides a check of the analysis.

In the example provided for demonstration purposes for p =
3, only 3* = 27 different parameter sets needed to be examined.
In this instance, the computation was not excessive for exam-
ining all combinations. However, for p > 3, the amount of
computing would build up very rapidly. When this is the case,
it will be wise to look at only a subset of the possible 37
combinations. One method would be to analyze in previously
defined subsets like those in the example. Although in some
models it is easy to define subsets, such an approach pre-
cludes sensitivity comparisons between the subsets. Another
procedure would be to take a balanced fraction, 379, so that
only 37-9 combinations would need to be examined. Assist-
ance in choosing such subsets for various values of p and g is
provided by tables [National Bureau of Standards, 1959].
Fairly substantial initial fractionalizing would be recom-
mended, with sequential augmentation of subsequent blocks
of additional fractions if more precision is needed.
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Fig. 4. Decomposition parameters for residual histogram,
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