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Abstract 

Spatially explicit analysis of fisheries acoustic data preserves heterogeneity observed in spatial distributions of fish. A 
software system- Digital Echo Visualization and Information System (DEVIS)- has been developed to process digital 
underwater acoustic data for spatially-explicit fisheries acoustic research. This system can be used to obtain spatial and 
temporal distributions of fish density, fish abundance, and fish lengths for management applications and for ecological 
modeling. DEVTS first reads d igital data, corrects the data according to the sonar equation, discriminates individual targets, 
and vertically and horizontally integrates the data into a two-dimensional array of mean volume backscattering strength. 
Individual target information (TS, spatial location) is meshed with the volume backscattering array, and representative 
acoustic sizes are estimated in array cells with missing target information. Estimation methods for acoustic sizes and potential 
biases in abundance estimates arc introduced and discussed. The final output is the spatial distribution of numeric density and 
fish length by length classes and for all fish. Data obtained on Lake Eric in September 1994 and on Chesapeake Bay in July 
1995 were processed using DEVIS and arc shown graphically. Steps required to process digital data are described and how 
these data can be applied to fish ecology is shown. Published by Elsevier Science B.V. 
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1. Introduction 

The most common type of fisheries acoustic surveys 
uses a downward-looking transducer that insonifies 

*corresponding author. Tel. : +1-734-74 1-2275; 
fax: +1-734-741-2003. 
E-mail addresses: michael.jcch@noaa.gov (J. Michael Jech), 
.ijech@whsunl.wh.whoi.edu (J. Michael Jech), 
luo@marlin.rsmas.miami.edu (J. Luo) 

1 Present address: Northeast Fisheries Science Center, Woods 
Hole, MA 02543. Tel.: + 1-508-495-2353. 

2 Tcl.: + 1-305-361-4847. 

0165-7836/00/$- see front matter Published by Elsevier Science B.V. 
Pf~SO I 65-7836(00)00!63 - 6 

the water column from surface to bottom along trans­
ects. Traditionally, this type of survey produces esti­
mates of fish density, abundance, and fish lengths for 
each transect. Investigations using high-resolution 
acoustic instrumentation have shown that fish distri­
bution is spatially patchy (Nero and Magnuson, 1989; 
Horne et al., 1996; Petitgas and Levenez, 1996) and 
that these spatial patterns can be important in ecolo­
gical processes (Brandt et al., 1992; Brandt and 
Mason, 1994). Data from fine-scale acoustic surveys 
result in a two-dimensional (horizontal and vertical) 
spatially-continuous landscape of fish distribution. 
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Survey transects often cross thermal (e.g. thermo­
clines and thermal bars) and spatial (e.g. nearshore 
vs. offshore) regimes where discontinuities in species 
composition. fish lengths, and abundances can occur. 
Spatially-explicit analysis of fisheries acoustics data 
can preserve heterogeneous fish distributions by par­
titioning data into array cells with typical dimensions 
of0.5-l m (vertical) and 50-100m (horizontal). Each 
cell has spatially-indexed values of numeric density 
and fish length and can be referred to the physical 
environment for quantitative analysis of biological­
physical relationships and bioenergetic modeling 
(Brandt et al., 1992). 

The advent of digital echosounders has greatly 
increased the accuracy and dynamic range of sonar 
data collected in aquatic systems as well as the overall 
speed in processing these data on computers. Digital 
echosounders have several advantages: they eliminate 
the time com.uming step of retrieving analog data, they 
can facilitate near real-time processing (Powell and 
Stanton, 1983 ). and they can be directly processed. 
visualized, and analyzed on any computer platform. 
The Digital Echo Visualization and Information Sys­
tem (DEVIS) software system was developed to read, 
process, analy7e, and visualize digital data for spa­
tially-explicit analysis of fishenes acoustic data. 
DEVTS was written and developed at the Great Lakes 
Center, SUNY-College at Buffalo for use with the 
scientific community. The impetus for this software 
came from the need for higher resolution spatial data 
for ecological studies of fish (Brandt and Mason, 
1994). 

In this paper. we describe DEVIS from the per­
spective of processing fisheries acoustic data for indi­
vidual target information (spatial location and 
acoustic scattering size) for two-dimensional arrays 
of volume scattering, for calculations of numeric 
density and for data visuali?ation. We give brief 
descriptions of the SONAR equation and demonstrate 
the importance of obtaining an accurate estimate of 
the acoustic si.le of individual targets for applications 
to fisheries management and ecological studies. For 
more detailed descriptions and derivations of the 
SONAR equation, the reader is directed to Forbes 
and Nakken ( 1972), Urick (1975), Clay and Medwin 
(1977), Greenlaw and Johnson (1983), MacLennan 
and Simmonds (1992), Misund (1997), and Medwin 
and Clay ( 1997). 

2. Software overview 

DEVIS is a fisheries acoustics research tool that 
provides a ~oftware environment where new and 
innovative data analysis and visualization ideas can 
be tested and implemented. DEVIS maintains a con­
stant data format. which increases the efficiency of 
processing, analyzing, and visuali.ling the data. 
Results are the spatial or temporal distribution of fish 
abundance, fish length, and fish density estimates. 
These results arc crucial for making fisheries manage­
ment decisions such as stocking ~trategies for sport 
fish (Brandt et al., 1991; Brandt, 1996). for monitoring 
programs, and for ecological studies such as estimat­
ing potential grazing rates of planktivorous fish on 
zooplankton (Luo and Brandt, J 993), spatial modeling 
(Nero and Magnuson, J 989; Nero et al., 1990; Mason 
and Patrick. 1993; Luo et al.. 1996), and spatially­
explicit bioenergetics models (Brandt et al., 1992; 
Brandt and Kirsch, 1993: Goyke and Brandt, 1993; 
Mason and Brandt, 1996). 

The overall format of DEVIS has been separated 
into two primary procedures. The first procedure reads 
the data, then corrects the data for time varied gain 
(TVG), absorption losses, beampattern effects, echo­
sounder and transducer gains, and calibration para­
meters (Fig. I, Digital data processing). We also 
incorporate algorithms in this step to discriminate 
individual targets from multiple targets. DEVIS out­
puts a two-dimensional mean volume backscattcring 
strength array C:i'v) and information on individual 
targets. The s, array is vertically intergrated and 
horizontally averaged echo energy which is propor­
tional to numeric density. The acoustic backscattering 
cross-section, angles off-axis, and spatial target loca­
tion are calculated for individual targets. 

The second procedure (Fig. I, Post-processing) 
meshes the :\\ array and individual target information 
into two-dimensional arrays of numeric density, fish 
length, and acou~tic size for statistical analysis and 
visualization. Acoustic echoes can be converted to fish 
length (Cushing. 1973; Midttun, 1984; Foote, 1991 ), 
and the spatial distribution of numeric density for a 
number of user defined length-classes can be com­
puted. The reader should note that the conversion of 
acoustic size to fish length is complicated by the 
orientation and aspect of fish relative to the transducer, 
by the elongated shape of fish, and the presence or 
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Fig. I. DEVIS flowchart for processing digital sonar data. The Digital Data Processing procedure (left side) reads raw digital sonar signals. 
parameter values, and calibration information to outputs,, and acoustic target size information. The Post-Processing procedure converts this 
information into an array of numerical density, fish length. and numerical density of size-classes. 

absence of a swimbladder (Nakken and Olsen, 1977). 
Compensation for these effects is currently an area of 
study in the fisheries acoustics research community. 
For mobile fisheries surveys, the vertical dimension is 
depth, and the horizontal dimension is time or distance 
along a transect. Time is the common denominator for 
integrating acoustic data with zooplankton data 
(Stockwell and Sprules, 1995) and physical data (Nero 
et al., 1990; Brandt et al., 1996). DEVIS also contains 
algorithms to integrate Global Positioning System 
(GPS) data, which is useful for placing the data in 
a geographic context. 

The software is written in Interactive Data 
Language (IDL) (Research Systems, 1996). IDL 
software is necessary to run DEVIS and can be run 
on a variety of platforms, from UNIX workstations to 
PCs (both Microsoft Windows based and Macintosh), 
increasing the portability of the code. Simrad EY500 
split-beam echosounder data have been used as a 
model for DEVIS. Post-processing and visualization 
procedures are independent of data input and were 
built on more than 6 years of fisheries and ecological 
acoustic processing using a variety of other echosoun­
der systems (Kirsch, 1992). 

3. Data processing 

DEVIS uses "raw" digital data (i.e. gains and 
corrections have not been applied) allowing greater 
flexibility to correct misapplied gains during data 
collection, to determine scales of integration, and to 
diagnose inconsistencies in the data. A parameter file 
defines parameters used by DEVIS, and values are 
changed for the specific environment and echosounder 
system (Table I). Parameters are noted in the text 
when applicable to processing procedures. To enhance 
processing time, only data in the water column are 
processed. In addition, near-surface and near-bottom 
data can be ignored (parameters: transducer depth, 
blanking distance - "blind spot" distance immedi­
ately below the transducer, and off-bottom integration 
distance). Data processing consists of correcting the 
signal for transmission losses and echosounder gains, 
applying calibrations, discriminating individual tar­
gets from multiple targets, and creating a two-dimen­
sional sv array. 

Acoustic sizes of individual targets are obtained 
by solving the SONAR equation. For an individual 
target, the SONAR equation is written in linear form 
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Table I 
Parameters and default values for processing digital sonar data with 
DEVIS" 

Parameter values 

Category 

Sonar frequency (kHz)b 
Vertical bin size (m) 
Horizontal bin size (ping) 
Record depth (m) 
Alpha (dB/km) 
Sound speed (m/s) 
Max. power output (W)b 

Directivity index (dB)b 
Transducer efliciency (% )" 
Max. angle (degrees) 
Blanking distance (m) 
Min. TS detection (dB) 
Min. echo length 
Max. echo length 
Pulse width (ms)b 
Equivalent 2-way beam angle (dB)b 
orr bottom integration (m) 
Transducer depth (m) 
Std. target strength (dB) 
Angle sensitivity alongshipb 
Angle sensitivity athwartship" 
.1·, minimum level 
Phase deviation 

Default value 

120 
1.0 

20.0 
20.0 
10.0 

1500.0 
63.0 
28.2 
77.0 
4.0 
1.0 

- 70.0 
0.8 
1.6 
0.3 

- 20.7 
0.5 
1.5 

-40.4 
2L.O 
2 1.0 

-100.0 
1.0 

• These values are changed to reflect the specific echosounder 
and analysis. 

b Echosounder specific parameters. 

as 

(I) 

where Pe is the echo pressure, (po) the source pressure, 
D the directional response of the transducer, !X the 
attenuation coefficient (dB m 1

), R the range (m) 
from the transducer to the target, and GE is the 
echosounder gain which is presented as a generic term 
that is echosounder dependent. The acoustic back­
scattering cross-sectional area. ab, (m2), is the acoustic 
size of the target. It is the ability of the target to scatter 
sound back to the transducer and is the primary 
variable used throughout all subsequent calculations 
and conversions to numeric density, fish length, and 
biomass. A common form of the acoustic size given in 
fisheries acoustics literature is the logarithmic form 
of target strength: TS=lO log10(ab,) (dB) (Clay and 

Medwin, 1977). Terms within brackets in Eq. (I) are 
used to correct the signal for source level, transmission 
losses, and echosounder gains. To obtain accurate 
measurements of ab, targets need to be recognized 
as individuals and compensation for the transducer 
directional response must be applied. 

Individual targets are discriminated from multiple 
targets using a series of criteria (parameters: min. TS 
detection, min. and max. echo length, and phase 
deviation). The first parameter sets the lower limit, 
in decibels, of target acoustic sizes. For example, if 
larger fish are wanted, the user can filter out smaller 
fish and zooplankton by setting a larger minimum TS. 
The next level of discrimination uses the echo shape to 
discriminate targets. The parameters min. and max. 
echo length are a proportion of the pulse width at the 
- 3 dB points (echo width at the half-power points of 
the peak). The echo waveform is similar to the wave­
form of the incident pulse, and the width of the echo 
relative to the pulse width has been used to discrimi­
nate individual echoes from overlapping echoes 
(MacLennan and Simmonds, 1992; Traynor and 
Ehrenberg, 1979). The final level of individual target 
discrimination is a phase deviation parameter. We usc 
the "standard deviation discriminator" to compute the 
standard deviation of phase values within the echo 
(Soule et al., J 996). 

After an echo has been accepted as an individual 
return, the angular position is computed. Split-beam 
and dual-beam systems have an advantage over single­
beam systems by directly measuring the target's posi­
tion relative to the acoustic axis. DEVfS calculates the 
alongship and athwartship angles of the echo peak 
from the Sirnrad "sample angle" data telegram. This 
angular position within the beam is used to compen­
sate for the transducer directional response. The final 
target filter (parameter: max. angle) eliminates targets 
if their maximum angular distance is greater than the 
specified angle. A smaller angle will reduce the num­
ber of accepted individual targets, and an angle greater 
than the beamwidth reduces the certainty of the ab, 
calculations for targets outside the main lobe. 

The echosounder must be calibrated to quantify 
acoustic measurements (Foote, 1982). This is accom­
plished using the standard target technique (MacLen­
nan and Simmonds, 1992) with a tungsten carbide ball 
(38 mm diameter, TS=-40.4 dB at I 20 kHz) (para­
meter: std. target strength). Calibration results consist 
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of the beampattern and a numerical correction for the 
difference between the standard target and observed 
target strengths. The beampattem requires a large 
number of valid target acquisitions in each quadrant. 
We obtained excellent results when calibrating a 
Sirnrad split-beam echosounder in January 1996 on 
the frozen Erie Canal using the ice as a stable plat­
form. A two-dimensional polynomial of the 4th degree 
is fitted with a multiple regression model to create a 
calibration file that defines the beampattern and 
numerical TS correction (similar to the "lobe" pro­
gram by Simrad). 

The digital signal is also corrected to obtain volume 
backscattering strength (sv) based on the equation 

32:n:2 (Digital Signal (R))R2 J0(2a.R/ 10) 

sv(R) = ( I ) ( I II(xdeff)A-2cr'¥10 01 10 10 G, JO) 
(2) 

where digital signal is the digital sample data, II the 
maximum power of the Simrad echosounder, xdeff 
the transducer efficiency, ,.;, the acoustic wavelength, c 
the speed of sound in water, r the pulse width, OJ the 
directivity index, '¥ the equivalent two-way beam 
angle, and Gsv is the echosounder gain (Table 1). In 
cases where noise from electrical or mechanical 
sources is present in the data, the Sv minimum level 
parameter filters unwanted noise similar to Watkins 
and Brierley (1996). The corrected .sv's are vertically 
intergrated and horizontally averaged to give a two­
dimensional (H,.x V11) mean volume backscattering 
strength (sv) array (Fig. 2), where Hn and Vn are the 
number of cells in the horizontal and vertical dimen­
sions (parameters: horizontal and vertical bin size). 
For spatially-explicit data processing, Sv is volumetric 
relative density (m- 3) in each cell. The Sv array and 
individual target information are passed to the post­
processing procedure for estimates of fish density, 
length, and abundance. 

3.1. Spatially-explicit post-processing 

Post-processing computes numeric densities for all 
fish, partitions the fish into different length classes, 
and computes numeric density for each length class 
(Fig. 1). We used the conceptual framework of 
MAVAIR (Multi-frequency Acoustic Visualization 
And Information Retrieval System, Kirsch, 1992). 
Length-classes are user defined and should reflect 
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Fig. 2. Visualization of an echogram showing a large fish 
aggregation (i.e. shoal or school), large individual predators, 
smaller prey fish, and aggregations of zooplankton. The lower array 
shows the data array for processing. Hn and V, are the horizontal 
and vertical dimensions. Sv is volume scattering, p is the density 
estimate (m - J) in each cell, and itp, ity. and it, are the estimated 
acoustic sizes for predators, prey, and zooplankton, respectively. (;., 
are acoustic sizes that must be estimated. The bottom panel shows 
diagrammatic representations of the four acoustic size estimation 
methods. The window fill method shows a horizontally elongated 
window. 

the size structure of fish populations in the environ­
ment. Acoustic size is converted to fish length using 
regression equations derived by Love ( 1971, 1977), 
Foote (J 991 ), or Fleischer ct al. (1997). 

To obtain numeric density (p) (m - 3) in array cells, 
we use the mean volume backscatter strength array, Sv, 
and acoustic sizes, O'bs in each cell. Assuming linearity 
and incoherent addition of scattering (Foote, 1983), 
the contribution to volume scattering by individual 
targets in each cell is proportional to their density, and 
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we can obtain p from 

(3) 

where p (m- 3) is the density estimate within each cell, 
and G-bs is the best estimate of acoustic size for each 
cell (modified from Eq. (7.3.13) in Clay and Medwin, 
1977). To calculate density, we must have an estimate 
of the acoustic size for all targets in the cell, and ab, 
should be representative of all types of scatterers. 

<Tb, can be obtained from: acoustic measurements of 
individual in situ targets, previous knowledge of the 
species composition and expected lengths, or derived 
using length-frequency information from concurrent 
catch data. Using previous biological information or 
catch data requires a regression equation that relates 
either <Tt>s to individual target lengths (i.e. a TS-length 
equation (Love, 1971; Foote, 1980a)) or volume scat­
tering to density (Love, 1975; Masse and Retiere, 
1995). TS-length equations are derived from labora­
tory experiments on a series of individual fish of a 
particular species, spanning the length range expected 
in the survey area. If one knows the length distribution 
from catch data, these lengths can be converted to ab, 
and then used in Eq. (3). Care must be taken to include 
the size selectivity in catch data before relating acous­
tic size to catch data. Using in situ target data for 
estimating a representative acoustic size requires that 
fish be recognized as individuals. This constraint is 
due to the processes of multiple scattering and/or 
acoustic shadowing. An advantage to using in situ 
targets is that the distribution of acoustic sizes should 
be representative of the local distribution of fish 
lengths. However, data must be collected when fish 
are not schooling or in dense shoals. 

Array cells may have at least one target, no indi­
vidual targets due to a tight aggregation of fish, or low 
Sv and no individual targets (Fig. 2). In cells with 
individual targets, the weighted mean backscattering 
cross-section is calculated from the distribution of 
targets in each cell, and numeric density is computed 
by Eq. (3). In cases where no individuals are present, 
<Tb, must be estimated. In cells with no individual 
targets, but with non-zero volume scattering (e.g. fish 
aggregations with no resolvable targets), acoustic 
size can be estimated using (I) a weighted-mean from 
all in situ targets in the array, (2) a weighted-random 
choice from all in situ targets in the array, (3) a 

dynamic local-search window, and (4) a nearest neigh­
bor (Fig. 2). 

The first acoustic size estimation method uses a 
weighted-mean CJbs from all individual targets in the 
array. This mean acoustic size is placed in all cells 
with missing targets. The second method uses 
weighted-random acoustic sizes chosen from the dis­
tribution of all individual targets in the array. In this 
case. the random choice is weighted by the probability 
of occurrence for each size and is updated for each 
cell. These methods assume homogeneous fish scat­
tering types or species throughout the array. The third 
method uses a dynamic local-search window. This 
window searches for in situ targets by beginning with 
array elements immediately surrounding a cell and 
then increasing in size until either a minimum number 
of targets is found or a maximum window size is 
reached. Three window parameters: maximum win­
dow radius, window shape, and minimum number of 
targets, define the search pattern and the target dis­
tribution used to obtain a representative acoustic size. 
The search pattern may var) from a symmetric shape 
to an elongated shape to accommodate different spa­
tial distributions of organisms. Fish species often 
segregate at thermal fronts (Brandt, I 993), and eJlip­
tical search patterns will estimate c1bs from individuals 
more representative of spatial distributions of species. 
A minimum number of targets within the search 
window provides a distribution of targets for acoustic 
size estimation and avoids a nearest neighbor search. 
A maximum window size restricts the search pattern 
to a local area where similar species are expected, and 
avoids searching the entire array. When the minimum 
number of targets is found, the weighted-mean of 
those targets is used as the representative acoustic 
size. If the maximum size is reached and no in situ 
targets are found, cell density is set to zero. The fourth 
acoustic size estimation method is the nearest neigh­
bor method, where the acouMic size of the nearest 
target is used as the representative size. Tf two or more 
targets are equi-distant, then the weighted-mean of 
those targets is used as the representative acoustic size. 

The methods to estimate <Tb, for calculation of 
numeric density in length classes are identical to those 
above but use targets in each length class exclusively. 
s, in each cell, is proportioned to the number of targets 
in each length class (a proportion of the number of 
targets in all length classes in each cell). Numeric 
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density for each length-class is then computed using 
the proportional cell density and O'bs in each length 
class. The proportional number of targets in a length 
class (rl)) is 

N 
'lj =-+-

L,j=JNj 
(4) 

where N1 is the number of targets in the jth size class 
and M is the number of length classes. We then 
prop01tion Sv in the cell by 

(5) 

where O'bsj is the acoustic size of the jth size class. This 
method assumes that all scattering is due to similar 
scallering types, and that volume backscattering fol­
lows the linearity principle (Foote, J 983). Acoustic 
data can be collected at night, when fish tend to be 
dispersed and are less likely to be found in tightly 
packed schools. Other analytic techniques are required 
to estimate the density of fish schools (Masse et a!., 
1996; Misund, 1997). 

4. Applications and discussion 

One caveat for spatially-explicit acoustic data ana­
lysis is that each array cell must have an estimate of an 
acoustic size. When cell dimensions are small, the 
probability of detecting individual fish decreases and 
methods other than using in situ acoustic targets must 
be used. Conversely, cells that are too large may 
contain a greater diversity of target types making 
O'bs less accurate. Echo statistics and probability den­
sity functions (PDFs) can be used to resolve "dense" 
vs. "loose" aggregations (Stanton, 1985; Stanton and 
Clay, 1986), and potentially to resolve scatterers of 
similar or varied types. The acoustic size estimation 
methods currently implemented use a distribution of 
targets from either individual cells or the entire array. 
In addition, with the exception of the nearest-neighbor 
acoustic size estimation method, the representative 
acoustic size is calculated by weighting individual 
targets by their frequency of occurrence. Using 
weighted distributions should improve estimates of 
the representative acoustic size and have been applied 
to zooplankton acoustic data (Hewitt and Derner, 
1993). 

Numeric Density: Acoustic si:zc estimated (B) 

Numeric Density: Acoustic size= 0 (C) 

0<--------·--------------------- km ------------------------> 30 

0 
0 

Relative Density 
Numeric Density I# m·31 

~ 
5 

Fig. 3. Acoustic data collected during September 1994 in the 
eastern basin of Lake Erie used to illustrate the necessity for an 
accurate estimate of acoustic size. Panel A shows s,. at a spatial 
resolution of 0.5 m vertical and 50 m horizontal. A dense 
concentration of fish are aggregated at the thermocline (20-25 m 
depth). In this aggregation, few individual targets were detected. 
Panel B shows resulting numeric density (m _,) distribution when 
abs was estimated in cells without individual targets using the 
weighted-random acoustic size estimation method. Panel C shows 
numeric density distribution when abs was set equal to zero for 
cells without individual targets. Panel B better represents the 
original distribution of fish. 

Acoustic size estimation methods are necessary to 
compute numeric density for spatially-explicit data 
analysis, and as with any estimation technique, can 
potentially bias estimates. 120kHz dual-beam 
(BioSonics model 102) acoustic data collected during 
September 1994 in the eastern basin of Lake Erie 
illustrate the necessity for an accurate estimate of 8-bs 

(Fig. 3). A dense concentration of fish are aggregated 
in the thermocline at 20-25 m depth (Fig. 3A). In this 
aggregation, few individual targets were detected. 
Two estimates of O'bs are compared. The first method 
used weighted-random estimates, using the distribu-
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tion of all targets in the data array, in cells without 
individual targets (Fig. 3B). The second method con­
servatively set the density in cells without individual 
targets to tcro (Fig. 3C). The ~patial density map with 
non-zero estimates better represents the original dis­
tribution of fish. whereas the distribution of the "zer­
oed" data does not adequately represent fish density at 
the thermocline. This example does not factor changes 
in cell si1.e or the sampling design which may com­
pound the variability in abundance and biomass esti­
mates. These examples are given to show how one 
component of analyzing acoustic data affects abun­
dance and b1omass estimates. Variability in abundance 
and biomass estimates increases the uncertainty for 
fisheries managers when stod..ing or harvest quotas 
must be set. We would like to note that this is an area of 
interest in fisheries acoustics, and estimation methods 
are constantly evolving. 

Data collected during July 1995. as part of 
the Trophic Interactions in Estuarine Systems 
(TIES) project. graphically represent various re­
sults using DEYIS. Data from a representative 
cross-bay transect, near the middle of Chesapeake 
Bay, were collected with a Simrad EY-500 split-beam 
echosounder operating at 120 k.Hz. Data have been 
corrected for transmission lo~~es and beampattern 
effects. The two-dimensional:\', array has a resolution 
of I m vertical (V11 ) and 20 pings horizontal (H11 ) 

(Fig. 4a). 
Numeric density (m 3) for all fish sizes was calcu­

lated using the weighted-random Gbs acoustic size 
estimation method in cells without individual targets 
(Fig. 4b). Con\"ersion of acoustic size (ab,) to fhh 
length was computed using a regression equation 
derived by Love (I 971 ). Fish lengths in acoustic 
data correspond well with midwater trawl catches 
(Fig. 4c), where targets were identified as primarily 
anchovy (Anchoa mitchilli) in the 50-100 mm 
length range (Edward Houde, personal communica­
tion). Fi~h in the 12-200 mm length class contribute 
the greatest proportion to overall density (Fig. 4d). 
Fish biomass was calculated using a length-weight 
regression for bay anchovy (Luo and Brandt, 1993) 
and biomass density (g m 1

) distributions are pre­
sented in Fig. 4e. 

In thi., paper we have not attempted to detenninc the 
"best" acoustic size estimation method or TS to 
length conversions. Methods to convert acoustic in for-
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Fig. 4. (a) The ~, array. The color ;.calc represents low (violet) to 
high (red) values in all echogmrm. The top of each cchogram 
begins at 2.5 m below the surface (lran,ducer depth i;, 1.5 m and 
blanking di,tan<.:c " I m) and end' at I m abo\e the bottom. Titc 
transect is appro,imatel) 3.5 km: (b) 1\umcric density (m- '> for all 
sizes of fhh: (c) The avcmge length of fi,h in each array cell: (d) 
Numeric den,rry of fish in the size class 12-200 mm; (c) The 
biomass density (g m 3) of all fish using an anchovy lenglh-weighl 
relationship. ror all panels, the horizontal scale is 3.5 km, vcnica l 
resolution i' 0.5 m and horizontal resolution is 50 m. 

mation to biologically meaningful numbers, espe­
cially the conversion from backscattering cross­
section to fish length, are continually improving. 
Backscattcring by fish is strongly dependent on the 
orientation of the swimbladdcr relative to the trans­
ducer (Foote, 1985; Clay and Horne, 1994) which 
influence!> conversion to fish length (Foote. 1980b). 
Currently we use accepted TS length equations and 
distributions of targets to compute "weighted'' esti­
mates of the representative acoustic size. DEVIS is a 
fisheries acoustic research tool to provide a convenienl 
software environment for testing new algorithms to 
improve estimates of fish density, length, and abun­
dance. As a rc~carch tool, the software is available for 
collaborative work. 
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5. Conclusions 

Spatially explicit analysis of fisheries acoustic data 
is desirable because it preserves the heterogeneity 
ubiquitous in spatial distributions of fish. We have 
developed a software system- DEVIS - to process, 
and spatially analyze and visualize fisheries acoustic 
data. DEVLS provides a software environment to 
efficiently test and implement fisheries acoustic algo­
rithms. We currently use Sirnrad echosounder data as a 
model for processing and visualization, but post-pro­
cessing, analysis, and visualization are independent of 
specific data formats. Spatially-explicit data analysis 
requires an estimation of average acoustic size, or a 
probability density function of acoustic size, for each 
array cell. Because acoustic size estimation methods 
may potentially bias abundance estimates, more 
research (e.g. sensitivity analysis) is needed for better 
accuracy and precision of acoustic estimates used in 
fisheries management and ecology. 
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