JuLy 1976 D. B.

RAO, C. H. MORTIMER AND D. J.

SCHWAB 575

Surface Normal Modes of Lake Michigan : Calculations Compared
with Spectra of Observed Water Level Fluctuations

Desrayu B. Rao,! C. H. MorTIMER? AND DAvID J. ScHWAB!

(Manuscript received 25 September 1975, in revised foir.1 23 February 1976)

ABSTRACT

Periods and structures of several normal modes of Lake Michigan (including Green Bay) are calculated
theoretically, taking into account the Lake’s topography and the earth’s rotation. The calculations are based
on a Galerkin method developed by Rao and Schwab (1976). Even though the calculations give both rota-
tional and gravitational modes, attention is focused primarily on the latter. The calculations show that there
are several modes dominant in the main basin of Lake Michigan and some dominant in Green Bay. The low-
est Lake Michigan mode has a period of 9.27 h. Green Bay exhibits a (co-oscillating or Hemlholtz) mode
with a period 10.35 h. For the modes dominant in the main basin, the periods and structures obtained from
theoretical calculations are compared to those deduced from spectral analyses of water level data from vari-
ous stations around the Lake. The agreement is found satisfactory for several of the lowest modes.

1. Infroduction

The problem of two-dimensional barotropic normal
modes of Lake Michigan is considered here. Past studies
of free oscillations in Lake Michigan and other water
bodies have dealt with the one-dimensional channel
theory, an excellent summary of which is contained in
Defant (1961). Channel theory, though fairly successful
for the lowest longitudinal modes, breaks down for
higher modes and for bodies of water that are not
“narrow and elongated.” It is only recently that the
two-dimensional problem of free oscillations in natural
water bodies, taking into account the earth’s rotation,
has been successfully attacked (see, for example,
Platzman, 1972, 1975). In this paper, frequencies and
structures of the two-dimensional normal modes are
calculated theoretically by the method briefly described
later, and the results are compared with observations of
the gravitational modes wherever possible.
the method of

2. Governing equations and

calculation

We are concerned with the smali-amplitude, free,
quasi-static oscillations of a homogeneous lake on a
rotating earth. The governing equations are the
familiar Laplace’s “tidal” equations. If V is the hori-
zontal velocity vector and 5 the free surface displace-
ment from the equilibrium position, these equations
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may be written as

da
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where

In the above equations the dependent variable is
taken as the transport vector M = HYV instead of the
velocity vector V. H (x,y) is the equilibrium depth of the
lake. The symbols defined in the spatial differential
operator L have their usual meaning. If we consider the
lake to be a fully enclosed water body, then the
appropriate boundary condition to be imposed on (1)
is the adiabatic condition

M:-n=0 (2)

on the coastline, where n is a unit vector normal to
the coast.

In order to determine the normal modes, we seek a
simple-harmonic solution, a=Ae*¢, so that Eq. (1)
becomes

LA=isA. 3)

It is clear that the frequencies ¢ (multiplied by i= v—1)
are the eigenvalues of the operator L and the A’s are
the corresponding eigenvectors. Each eigenvector Aisa
function of the horizontal coordinates and represents
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the spatial structure of a normal mode assomated with
a particular frequency o.

The solution to the. operator equation (3) must
proceed by discretising the operator L, particularly
when a real lake with arbitrary bathymetry and
planform is considered. Platzman (1975) lucidly
discusses the various methods considered by different
investigators to attack the problem. The method
adopted here is a Galerkin method described by Rao
and Schwab (1976). This method proceeds in three
steps. Steps 1 and 2 consist of numerically constructing
two sets of orthogonal functions, one set for the irrota-
tional part of the velocity field and the other for the
solenoidal part of the transport field by solvmg two
self-adjoint elliptic operators:

SteEP 1
V-HV$oa= —Aata
a¢a . (45')
H——=0 on the boundary
on
StEP 2
v 'H‘1V|ﬁ,,= ‘I‘aV’a
} ()
H~4,=0 on the boundary.
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Fic. 1. Map of Lake Michigan with the computational grid
superimposed. Code letters refer to water level recording stations
listed in Table 2.
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Here ¢, ¥4 are the velocity potential and the transport
streamfunction and \,, g« are the characteristic values
of the above self-adjoint problems. If there are no
Coriolis forces in the equations, the solutions of the
solenoidal part (step 2) represent circulation associated
with nondivergent transports and those of the irrota-
tional part (step 1) represent no-rotation, free gravita-
tional oscillations of the basin. When Coriolis forces
are present, these two fields are coupled as shown by
Proudman (1916) and the solutions to the rotating
problem [Eq. (3)] are built up by superposition of
these two sets of orthogonal functions (step 3). That is,
the dependent variables of the rotating case are
expressed as

STEP 3

Mé=3 p.Mé
M=% ¢MYL, )
77=Za: TaNa

where M=M¢+M?Y. The functions M? and MY and
Nq are given by

A\ ¥
M"’— —HV¢,; Mb= kX Vy,; na=(~) $a.  (6)
F4

When these expansions are substituted into the rotating
problem and use is made of the orthogonality of the
basis functions ¢, ¥«, we obtain a matrix representation
of the operator L [Eq. (3)]. The eigenvector A in that
equation is the set of expansion coefficients (pu,¢a,”a)
defined in (5) for an eigenfunction of the rotating case.

The free oscillations in an arbitrary rotating basin
constitute two distinct types of modes, gravitational
and rotational. The existence of gravitational modes is
ehtirely dependent on free surface undulations; they
can exist even if there is no rotation (Coriolis forces).
In the absence of rotation, the gravity modes are
standing waves with nodal lines, across which the
phase of the wave changes discontinuously through
180°. When rotation is taken into consideration, the
standing modes are transformed into propagating modes
and the nodal lines are replaced by amphidromic points.
The rotational modes owe their existence solely to

- deformations of potential vorticity f/% in the undis-

turbed state (produced by topographic gradients in a
homogeneous lake with a constant f) and they can
exist in the absence of gravity. Their structures are
dominantly quasi-horizontal. Apart from these distinc-
tions, there is another fundamental distinction between
the rotational and gravitational modes. The periods of
most gravitational modes are less than those of most
rotational modes. For the Great Lakes of North
America, the frequencies of all gravitational modes are
generally confined to the range f<o< e and the
frequencies of the rotational modes to the range
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TasLE 1. Frequencies and features of the first 13 normal modes of the main basin of Lake Michigan
(not including Green Bay modes) calculated with rotation.*

Later identification with

Frequency Equivalent period observed oscillations
(cpd) (h) Principal features (cpd)
2.59 9.27 see Fig. 4a 2.66
4.57 5.25 see Fig. 4b 4.61
6.30 3.81 see Fig. 5a 6.51
7.61 3.15 see Fig. Sb 7.70
8.86 2.711 Maximum range at far N end around 8.87
negative amphidrome. peak at MC only
9.55 2.51 see Fig. 6a 9.51
10.55 2.28 see Fig. 6b 10.94
10.65 2.25 Range maxima at extreme N end and component of (?)
SW corner, the latter associated 10.94
with a negative amphidrome.
11.39 2.11 Range 1009, near Escanaba (Green none seen
Bay) and 369 at Chicago.
11.96 2.01 Two positive, four negative amphidromic 12.00
systems. Highly complex.
12.61 1.90 Seven amphidromic regions (two negative); 12.52(g)®
amplitudes greates in S half.
13.27 1.81 Both modes (13.27 and 13.61) show: none seen
complicated structures; highest ranges
near Beaver Island and Chicago; isolated
pockets>209, elsewhere; seven nodal
lines in corresponding velocity potential
functions.
13.61 1.76 13.61(h)®

* Only the structures of the five lowest modes are shown in this paper. The authors intend to describe the structures of higher modes
in a Special Report, Center for Great Lakes Studies, University of Wisconsin-Milwaukee.

2 Only at CC (f, in Fig. 2).
b Lettered peaks in Figs. 2 and 3.

0<o¢<f. (In the continuum, zero frequency is a
condensation point for rotational modes as is infinite
frequency for gravitational modes.) These differences in
the two types of modes become important when the
question of verification of theoretical calculations with
observations is considered. In the present investigation,
the verification of the calculations is based on analyses
of water level data (details are given later), and from
these analyses it is only possible to focus attention on
the gravitational modes of oscillation.

The structures of the normal modes discussed later
are given in terms of the variations of the height field
n(x,3,t). The solution for a normal mode of frequency o
may be written as

1(%,3,t)=Re{n(z,y)e} )
=A(x,y) cos[st—6(x,y)]
A=(n2+n2)} r Q)
6(x,y)= arctan( —-2)
Nr B¢

Here 4 is the amplitude with its isopleths representing
co-range lines, and § is the phase of high water with
its isopleths representing co-tidal lines,

3. Lake Michigan basin

The calculations for the frequencies and structures of
normal modes are carried out using grid squares of 14.4
km side fitted to the outline of Lake Michigan, including
Green Bay (Fig. 1). The depths are given at appropriate
points. The mean depth of the Lake from the numerical
grid, 84.2 m, is 1.3, less than that derived from Lake
depth charts. The influence of this difference on
calculated frequencies will be noted later. The dots,
indicating the positions where the transport stream-
functions are defined, and the open circles, indicating
the points where the velocity potentials are defined,
total 200 points for the streamfunction and 271 for the
velocity potential. Thus, by solving Egs. (4a, b) in the
discretised form on their respective grids, we obtain
200 orthogonal functions (Y.’s) for the solenoidal field
and 271 (¢.’s) for the irrotational field. In the final
step, the number of ¢, and ¥, functions to be used in
the superposition [Eqgs. (5)] for the rotating solution
is arbitrary. Here we arrange the ¢,’s and ¢,’s in such
a fashion that the associated \.’s and u.’s [see Eq. (4)]
form an ascending sequence and use the lowest S0 of
the ¢.’s and ¥.’s. Such a choice of truncation of the
above basis functions retains the ones with the largest
space scales, and the resulting eigenvalues and eigen-
functions of the rotating problem converge rapidly—at
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least for the gravitational modes. The calculation
provides for each mode: (i) a frequency; (ii) a phase
angle for each grid point, relative to 0° at the grid
point corresponding to Mackinaw City (MC in later
diagrams); and (iii) the distribution of elevation range
relative to 100 at whichever grid point possessed
maximum range for that particular mode. From (ii)
and (iii) the co-phase (co-tidal) lines and co-range
lines were interpolated (see Figs. 4-7).

4. The first 13 normal modes of the main basin,
calculated with rotation and compared with
spectra of observed fluctuations in water level

We found two distinct types of range distribution:
one in which the largest ranges are confined to Green
Bay, with less than 109, elsewhere in the main basin,
and a second type in which the largest ranges are in
the main basin. For convenience we shall refer to
these two types as Green Bay modes and main basin
modes, respectively, although both contribute to the
complete set of whole basin modes. We describe and
discuss the Green Bay modes in a later section.

The frequencies (and periods) of the first 13 normal
modes of the main basin, calculated with rotation, are
listed in Table 1 with descriptive remarks and with the
corresponding frequencies of observed oscillations with
which the calculated modes were identified. To avoid
later confusion, which a sequential numbering scheme
might introduce, the modes are referred to by their
calculated frequency in cycles per day (cpd). Table 1
discloses that the observed frequencies are generally
slightly higher than those calculated. The percentage
differences range from —0.7 to 43.5 and average +1.4.
The mean depths computed for the model and for the
Lake when the water levels were recorded (chart
depth plus 0.3 m) were 84.2 and 85.3 m, respectively,
with square roots differing by 0.7%. This accounts
for part of the difference between computed and
observed frequencies.

TaBLE 2. Code letters used for the water level recording
stations around the Lake (see Fig. 1).

Station name Code letters

Mackinaw City, Mich. MC
Sturgeon Bay Canal, Wis. ST
City of Green Bay, Wis. GB
Milwaukee, Wis. MI
Waukegan, Iil. WA
Wilson Avenue

Crib, Chicago, Iil. Cw

Calumet Harbor, Il CC

Holland, Mich. HO
Ludington, Mich. LU
* Escanaba, Mich. ES
* Plum Island, Wis. " PI

* The recorders at these stations were operated for a short
period of time only.
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For comparison with calculated frequencies and
structures, spectra of water level fluctuations at coastal
stations are used. Table 2 lists the names of these
stations and the code letters adopted for convenience.
Particulars of the recorders and of the agencies operating
them are given in the papers quoted later in this
section. The spectra used to obtain frequency and
structure were derived from three sets of water level
data with the mean and best-fitting linear trend
removed: (a) two months (July-August 1961 or
November-December 1962) of 15 min averages of
water levels estimated by eye and digitized from
continuous traces; (b) eighteen months (June 1962 to
November 1963) of hourly, non-averaged readings
digitized by the U. S. Army Corps of Engineers, Lake
Survey, from original charts; and (c) six months of
5 min readings (May-November 1969) from stations
ST, GB and LU, also supplied by the U. S. Lake
Survey (see Acknowledgments). Portions of data
sets (a) were used to prepare the spectra for single
stations in Mortimer (1965). Data sets (b) and (c)
were used to prepare the spectra in Mortimer and Fee
(1976) in which station pairs were analyzed for coher-
ence and phase difference. That paper should be
consulted for detailed descriptions of the methods used
and of the way in which aliasing difficulties were
circumvented. The first six main Lake modes were
identified as five longitudinal modes of the whole basin
and a uninodal transverse oscillation of the southern
half. The phase progressions of the first two longitudinal
modes and of the semidiurnal tide were determined.
Much of the interstation coherence and phase informa-
tion obtained during that study could not be used
because seven recording stations (CW and WA were not
included) were too few to “‘resolve” the phase progres-
sions of modes above the second. Now that the cal-
culated structures are available, further progress can
be made.

The 1961-62 spectra, not severely aliased because
15 min average levels were used, are plotted on a
common frequency scale covering 0 to 28 cpd in Figs. 2
and 3 for the main basin. The complete spectral range
was 0 to 48 cpd, but few features of interest were
found above 28 cpd. As we are here principally in-
terested in frequencies and structures, the absolute
scaling of spectral density is not included. Relative
heights of spectral peaks are sufficient for our purpose.

First we identified peaks, some prominent, some less
so, which appear at or close to the same frequency in
spectra from several stations. These are indicated by
best-fit vertical lines in Figs. 2 and 3. We have used
letter labels to provide continuity with Mortimer and
Fee’s (1976) discussion. Where slight differences were
found between the frequency estimates so derived and
those published by Mortimer and Fee, we use (in
Tables 1 and 3) the estimates from Figs. 2 and 3
because of the greater resolution of the 1961-62 spectra.
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Fi16. 2. Spectra of water level fluctuations derived from two months of 15 min average levels

at recording stations around the shores of the main Lake Michigan basin in July-August 1961
or November—-December 1962 : ST (1962), MI (1961), WA (1962), CW (1961) and CC (1961,
1962). The letters used to indicate spectral peaks are also used in Figs. 3 and 9; each vertical
line is a best fit to peaks occurring near this frequency in several spectra, definining an “ob-

served” oscillation.

A rough indication of amplitude distribution among
the stations is given by inspection of heights of spectral
peaks in Figs. 2 and 3. The following code was used
for the comparisons in Table 3 and in Figs. 4-6:
*** very large, ** large, * present, *~ present but small,
*0 not visible. Estimates of the phase progression of
the observed modes followed the procedure described
by Mortimer and Fee (1976) and used unpublished
information on interstation coherence and phase,
extracted from the 1962-63 and 1969 spectra. All

interstation phase differences were used to derive the
best fit of station angles relative to 0° at MC, giving
greatest weight to those estimates associated with high
interstation coherence. For the lowest mode, the scatter
of interstation phase estimates for individual station
pairs around the best fit was small (=3° or +7°—6°
if GB 1969 was included). The scatter was greater for
the higher modes (see Table 3). The scatter for the
fifth and higher modes was too great to yield useful
comparisons.
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The structures of six of the lowest modes computed
for the main basin (i.e., not including Green Bay
modes) are assembled in Figs. 4-6 and are referred to
by their calculated (with rotation) frequencies. Modes
2.59, 4.57 (Fig. 4) and 6.30, 7.61 (Fig. 5) and 9.55
(Fig. 6a) are counterparts of longitudinal modes 1 to 5
identified by Mortimer and Fee (1976), with one to
five positive amphidromic regions, i.e., with counter-
clockwise phase progression (a filled circle represents a
positive amphidromic point). Mode 10.55 in Fig. 6b
corresponds with the first transverse mode of the
southern half of the Lake, described and named T, in
Mortimer’s previous publications (e.g., 1965). As theory
predicts (Rao, 1966), the transverse oscillation is

SPECTRAL DENSITY

log

10 db
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associated with a negative amphidrome (an open circle
represents a negative amphidromic point). This occupies
most of the southern half of the basin and is associated
with large-amplitude ranges. When, as in this case, the
calculations show an extensive amphidromic system,
large oscillations are seen in the spectra.

The “observed” spectral evidence for these identifica-
tions is entered on lines B and D in Table 3 and in
Figs. 4-6. As explained in the legend of Fig. 4 and in
the heading of Table 3, the observed quantities are
estimates of frequency, relative elevation range at
individual stations, and station phase angle. The
calculated values are entered for comparison on lines A
and C of the Table. They correspond to single grid

HOURS

1.4

18 4 28
FREQUENCY, CYCLES PER DAY

1961 95 %

confidence

limits
i

p q
m
n
[0]
ocd 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Fi1c. 3. As in Fig. 2 except for MC (1961, 1962), ST (1962), LU (1961),
MI (1961) and HO (1962).
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TaBLE 3. Comparisons of calculated and observed frequencies, elevation ranges and phase angles for five main basin modes and nine
stations (explanation of the line headings given at the bottom of the Table).

Mode Maximum
(cpd) Station MC ST MI WA cw CC HO LU GB deviation
2.59
[ 266 A 100 29 35 56 64 66 46 4 94
B *% * * *% * ** *k * *kkk
C (deg) 0 3 177 178 179 180 183 320 193
D (deg) 0 — 151 — — 169 197 294 166 +7 —~6
E (deg) 0 +26 +11 —14 426 +27
4.57 A 100 33 5 23 35 38 9 33 70
[ 4.61] B dk Hkk *0 * *% *% *___ Adok Kk
C (deg) 0 177 203 353 357 359 17 175 164
D (deg) 0 150 - — 310 30 170 100 +13 —-19
E (deg) 0 +27 +49 —13 +35 +64
6.30 A 100 5 25 16 48 60 12 23 28
[ 6.51] B * *__ * *__ *x Fokk * *__ *
C (deg) 0 200 12 163 181 186 347 11 26
D (deg) 0 150 355 — — 170 25 46 225 +12 —12
E (deg) 0 +350 +17 +16 —38 -35 +161
7.61 A 83 36 34 13 72 100 36 23 5
[ 7.70] B ok * *__ *() * *x * * *Q
C (deg) 0 4 185 269 355 4 180 354 245 :
D (deg) 0 350 135 —_ — 330 215 310 +30 —-29
E (deg) 0 +14 +50 +34 —35 +44
10.55 A 78 3 - 6 51 330 20 19 7 1
[10.94] B *() *Q ook ok *ak *__ ok *k *Q
C (deg) 0 222 268 241 253 79 50 208 28 :
D (deg) 0 250 — — 100 227 55 +17 —-17
E (deg) 0 +18 -21 =177 +153

s “Observed” frequencies on line B may differ slightly from those published by Mortimer and Fee (1976) because they were derived

from 1961-62 and 1962-63 spectra, respectively.

b Elevation range (100) occurs on the shore line between WA and CW.

The left-hand column lists, for the mode considered, the calculated and observed frequencies shown without and with square brackets,

respectively. Line headings are as follows:

A. Calculated elevation range at each station point, relative to a basin maximum of 100.

B. Approximate categorization, for each station, of the magnitude of the spectral peak lying at or close to the observed frequency (by
inspection of Figs. 2 or 3). The following code is used : *** very large, ** large, * present, *~ present but small, *0 not visible. The
code allocation depends, not only on modal structure, but also on how strongly the particular mode is excited.

C
D.

. Calculated phase angle at each station point, relative to 0° at MC.
“Observed” phase angle, for each station and relative to 0° at MC, derived in the manner described in the text. The “odserved”

phase angle is omitted where the spectral peak is not visible (code *0 in column B). Maximum deviation is that of indivibuaj sta-

tion pairs from the best fit for all stations pairs.

E. Calculated phase angle minus observed phase angle, i.e. C—D.

points for stations GB, M1, CC, HO and LU. Stations
ST, WA and CW are better represented by the average
values of pairs of grid points. Notes follow on individual
main basin modes, referred to by their calculated
frequencies.

a. Mode 2.59 cpd (first longitudinal mode)

Fig. 4a shows two positive amphidromes, one
occupying the whole main basin, the other inside the
mouth of Green Bay. The agreement with observed
amplitude distribution and phase progression is
relatively close, the maximum spread of the differences
in line E, Table 3, being only 41°. This lowest main

basin mode, with a large amplitude range (94) at GB,
is one of the driving oscillations for the Green Bay
resonance, the semidiurnal tide being the other.

b. Mode 4.57 cpd (second longitudinal mode)

Fig. 4b shows four positive amphidromes, two
occupying the main basin, one at the mouth, and one
near the inner end of Green Bay.

Whereas the peaks corresponding to the first mode
are apparently single, the second mode appears in-
corporated in a double peak in many spectra (spectra
CC, WA, LU and MC in Figs. 2 and 3) with summits
near 4.6 and 4.8 cpd. The origins of this double peak
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2.59 ¢, ||PERIOD  9.27 tr] 5.25 hr|
[2.66 ]

PERIOD
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F16. 4. Calculated frequency, period and structure of the first two longitudinal modes of
the main Lake Michigan basin, taking the earth’s rotation into account. Phase progression,
relative to 0° at MC, is shown by co-tidal lines (heavy for 0°, 90°, 180° and 270°, light for 30°
intervals). Distribution of relative elevation range is shown by co-range lines, broken and
relative to 100 at that grid point which exhibits maximum range for the mode concerned.
The bracketed “‘observed” frequency at the head of the figure is that of the particular spectral
peak (Figs. 2 and 3) identified with the calculated mode. Bracketed angles near some station
code letters are the “observed” phase angles, for the “observed” oscillation and relative to 0°
at MC, derived for those stations from interstation coherence and phase information as de-
scribed in the text. The asociated coding categorizes the spectral heights at the “observed”
frequency in Figs. 2 and 3: *** very large; ** large; * present; *~ present but small; *0 not
visible.
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were discussed by Mortimer and Fee (1976, their
Fig. 8). They tentatively identified the second Michigan
mode at 4.8 cpd and interpreted 4.6 cpd as the signal
from a co-oscillation with Lake Huron, with which the
Michigan basin is connected through the Straits of
Mackinac. In reality the combined Michigan-Huron
basin will possess a complete set of normal modes, with
a Michigan and a Huron subset strongly developed in
one basin but not in the other. It is also likely that some
modes possess appreciable amplitudes in both basins;
but because our model is closed at the Straits, these
modes are excluded.

Table 3 shows good agreement between the phase

progressions of the calculated 4.57 cpd mode and the
observed oscillation at 4.61 cpd. The greatest deviation
in the main basin is at MI where the elevation ampli-
tude is very low. Agreement between the elevation
amplitudes is also good; and oscillation b in Figs. 2
and 3 must therefore be identified with the second
Michigan longitudinal mode, contrary to the earlier
opinion of Mortimer and Fee (1976). This leaves the
identity of the 4.8 cpd oscillation unclear. We have
confirmed that it is not a good fit, in phase progression
or amplitude distribution, to the second Green Bay
mode at 4.84 cpd (see Table 4). Perhaps it is a Michigan-
Huron mode.
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¢. Mode 6.30 cpd (third longitudinal mode)

Except at MI, the spectral peaks at 6.51 cpd identified
with this mode appear to be single, and (except at GB)
this identity is well supported by Table 3. Fig. Sa
shows three positive amphidromes in the main basin
and three in Green Bay.

d. Mode 7.61 cpd (fourth longitudinal mode)

With three positive amphidromes in Green Bay and
four in the main basin (Fig. 5b), this mode shows good
agreement (Table 3, except for GB phase angle) with
the observed 7.7 cpd oscillation. However, the peak
summit at this frequency appears as a component of a
multiple (triple?) peak in several spectra (CC, MI, LU
and MC, Figs. 2 and 3). Again Michigan-Huron
oscillations may be involved.

e. Mode 9.55 cpd (fifth longitudinal mode)

This mode is characterized (Fig. 6a) by five positive
amphidromes in the main basin, with the main activity
associated with the most northerly and the most

H. MORTIMER AND D. J.

SCHWAB 583
southerly of these. There are also five amphidromes in
Green Bay, two of which are negative. The observed
oscillation (9.51 cpd) corresponding to this mode is
only seen in about half the spectra in Figs. 2 and 3.
When it is seen, most strongly at CC, it appears to be
a component in a broad and probably multiple peak.
Although the calculated and observed distributions
agree fairly well, we made no entry in Table 3 because
no clear phase progression could be discerned in the
1962-63 interstation comparisons.

f. Mode 10.55 cpd (first transverse mode, f in Fig. 3)

The large, apparently single peaks at 10.94 cpd at
MI, WA, CW, HO and LU (Figs. 2 and 3) are clearly
identified with this mode, which displays (Fig. 6b)
an extensive negative amphidrome in the southern
one-third of the basin and eight positive amphidromes
(four of which are in Green Bay) with generally
negligible elevation range elsewhere. The comparison
in Table 3 is interesting. Because of the strong excitation
of this mode—it was interpreted as a transverse
standing oscillation by Comstock (1872a, b) in advance

|PERIOD 3.81 hr]

[1709CC % % %

cy|[PERIOD 3.5 |

Ho [215°]

Fic. 5. As in Fig. 4 except for the third and fourth longitudinal modes.
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[10.94]
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Fi1c. 6. Asin Fig. 4 except for the fifth longitudinal mode (9.55 cpd) of the main Lake Michi-
gan basin and the mode (10.55 cpd) identified as the first transverse oscillation of the southern

part of the basin.

of Forel’s better-known seiche interpretations for
Lac Leman—the oscillation is conspicuous at several
stations, including MI and LU, for which the relative
calculated amplitudes are low. Agreemient in phase
progression is good for some stations but not (as often
appears to be the case) at GB and, more significantly,
not at HO and LU. A clear explanation of this dis-
crepancy is now lacking, but it may be linked with the
fact that HO and LU are the only two recorders placed
in small lakes connected to the main basin through long,
narrow shipping channels. The recorded levels may
therefore not be in phase with lake levels at this and
higher frequencies.

g The remaining modes

A complete listing of the first 13 normal mode

frequencies, calculated with rotation, is given for the-

main basin in Table 1. Four of the remaining modes
(8.86,11.96, 12.61 and 13.61 cpd) can be unambiguously
identified with spectral peaks in Figs. 2 and 3, as
indicated in Table 1, using the elevation comparison
procedure of Table 3. (We intend to describe the

structures of these modes in a Special Report of the
Center for Great Lakes Studies, University of Wis-
consin-Milwaukee.) Since the spectral expansions in
Eq. (5) are limited to 50 terms, truncation errors in the
higher potating modes become increasingly serious.
Therefore, our comparisons for main basin modes do
not go beyond 14 cpd. -

5. The Green Bay normal modes
a. Frequency calculations using coarse and fine grids

It is of particular interest to examine the modes of
Green Bay. In studies of bay (and gulf) oscillations,
the precise location of the mouth, connecting the bay
to an open water body, is in general not obvious a priori.
In our calculations, the numerical grid covers the Lake
Michigan and Green Bay combined system, even
though the Bay is resolved in a crude manner. As a
consequence, the calculations yield information about
the approximate location of the mouth since the Green
Bay modes form a subset of .the total modes obtained.
These calculations also show, not surprisingly, that the
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shape of the line defining the mouth is a curved line,
lying outside the topographic entrance and changing
position with different modes.

Among the various modes of oscillation of a bay, the
lowest has only one nodal line at the mouth and none
in the interior of the bay. The frequency of this mode
tends to zero as the mouth is closed, and it has no
counterpart in any of the modes of a closed basin in
contrast to the higher modes of a bay, all of which can
be made to correspond to modes of a closed basin. In
tidal terminology this lowest mode is the co-oscillating
mode and in acoustic terminology the Helmholtz mode.

As noted earlier, the lowest normal mode of the Lake
Michigan-Green Bay system is the co-oscillating Green
Bay mode, with elevation range confined almost entirely
within the Bay and with less than 109, of relative
elevation range elsewhere. The structures computed
without and with rotation, show an arc-shaped nodal
line and an arc-shaped amphidromic region, respectively
(Fig. 7a), lying well outside the mouth of the Bay.
The periods (>15 h) initially determined by these
calculations are in conflict with spectral evidence
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(Mortimer, 1965; Mortimer and Fee, 1976) that the
observed period of the lowest Bay mode lies between
10 and 11 h.

The numerical grid covering the Lake Michigan-
Green Bay system was chosen, as shown in Fig. 1,
to yield a satisfactory representation for the main basin
of Lake Michigan. Obviously, the resolution of the
Green Bay characteristics by this grid turned out to be
rather poor. To test whether this discrepancy arises
because the grid is too coarse or because it is poorly
aligned to the Bay shoreline, we carried out two sets of
normal mode calculations for the bay alone, without
rotation and with a nodal line imposed outside the
mouth in the position determined by the nonrotating
calculation for the first mode. In one set [ (b) in Table
47, the same grid spacing (14.4 km) was used, but the
grid was aligned 32° east of north, parallel to the main
axis of the Bay. In the other set of calculations [ (c) in
Table 4] a finer grid spacing (7.2 km 41° east of north;
see Fig. 8) was adopted. The results are presented in
Table 4 because of their methodological interest.
Column 1 lists the frequencies of the Green Bay modes

2.32 ¢, |[PERIOD 10.35 tr]

[2.25 ]

cC

[PERIOD 4.84 nr]

4.96 ¢
[4.46 ]

Pk
Vot

70 1017
B0 \:I'/Ij/lo
LN
v

cc

F16. 7. As in Fig. 4 except for the first and second Green Bay modes.
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GREEN BAY _ PERIOD
MODE NO. ) HR
¢
¢ 10.35
#
@D S Ko g
FREQUENCY
c/d
2.32
[2.25] 4.84
4.96
[4.46] 412
5.82 Imposed nodal line
[5.76] :

Fic. 8. Frequency, period and distribution of elevation range
calculated from velocity potential (without rotation) for the first
three modes of Green Bay, using a “fine” grid of 7.2 km spacing
aligned 41° east of north, and with a nodal line imposed outside the
Bay mouth. The arc-shaped nodal line is that derived for the first
Bay mode, calculated using the “coarse” (Fig. 1) grid without
rotation. The bracketed “observed” frequencies are those of
Table 4, identified with the calculated modes. The elevation ranges
are relative to +100 at that grid point which exhibits the highest
elevation range for the mode in question.

initially obtained using the coarse grid applied to the
whole basin, without rotation and with no nodal line
imposed at the mouth. For comparison with the
calculated frequencies listed in column 3, spectra of
Green Bay water level fluctuations at three stations
are assembled in Fig. 9. The two lower spectra GB
(1961) and GB (1963 under ice cover) are equivalent
to those in Figs. 2 and 3, being based on about 60
days of 15 min averages.

When compared with the frequencies of observed
oscillations listed in column 4 in Table 4, column 1
shows a poor fit, while column 3 generally shows the
best fit. These results may be attributed not only to the
coarseness of the grid but also to the unnatural bound-
ary condition for the transport on a misaligned, zig-zag
boundary. However, the imposed nodal line (Fig. 8)
may be unrealistic for the higher modes.
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b. The first Bay mode

All the available spectra show most of the power
concentrated in a large broad peak with two or some-
times three distinct summits, the highest at the semi-
diurnal tidal frequency, 1.95 cpd. There is a second
summit near 2.7 cpd, the first main basin mode, and
usually a third summit near 2.2 ¢pd representing the
lowest Bay mode. Because of the closeness of their
frequencies to the Bay mode, the semidiurnal tide and
the first main basin mode force the Bay into strong
resonance. Proof that the frequency of the Bay mode
must lie between 1.95 and 2.7 cpd is afforded by the
phase relationships. Mortimer and Fee (1976) observed
that “MC leads GB by 35° and 175° at 1.95 and 2.7
cpd, respectively.” The small but distinct summits at
2.2 ¢pd in two spectra in Fig. 9 are therefore taken to
represent the first Bay mode. As Fig. 7a shows, the
relative elevation range of that mode is low (<109)
in the main basin, but there is evidence of this oscillation
as a small but persistent sub-peak or “shoulder” on
the high-frequency side of the tidal peak in spectra of
several main basin stations.

¢. The second Bay mode

There is also a large second mode peak in all spectra
in Fig. 9. Johnson (1963) also found 5 h oscillations to
be common at ES. This peak is broad and probably
double, one component (the right-hand summit)
coinciding with the main basin second mode. This leaves
the other summit near 4.5 cpd as candidate for the
second Bay mode, but at a lower frequency than shown
in Table 4, column 3. A possible reason for this dis-

TasirE 4. Computed and observed frequencies (cpd) of the first
four Green Bay normal modes. Computations were made without
rotation and were based on the following grids:

(a) The original grid (Fig. 1) with 14.4 km spacing, applied to
the whole basin.

(b) A grid with 14.4 km spacing aligned 32° east of north.*

(c) A grid with 7.2 km spacing aligned 41° east of north* (the
equivalent period is in parentheses).

Frequencies of the observed Green Bay oscillations (see text and
Fig. 9) are listed in column 4. Structures of modes 1 and 2, with
rotation, are shown in Fig. 7.

Computed frequencies

1) ) €)) Period 4)
Original Aligned Fine corre- Observed
Green Bay coarse  coarse  grid sponding oscillation
mode grid grid  (cpd) to col. 3  frequency
number (cpd) (cpd) (h) (cpd)
1 1.56 201 232 (10.35) 2.25
2 4.00 4.05 4.96 ( 4.84) 4.46
3 5.27 488 5.82 ( 4.12) 5.76
3 7.30 7.27 691 (347 7.01

* Grids (b) and (c) were applied to the Bay only, with a fixed
modal line outside the mouth (see Fig. 8). The number of ¢ points
was 25 for (a) and (b) and 108 for (c).
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crepancy is seen in Fig. 7b. The nodal “line” (the
90°-270° phase line) of the second mode extends further
into the main basin than does the 90°-270° line of the
first mode. Imposition of the first-mode nodal line in
the second mode calculation may therefore have given a
frequency result which was too high. On the evidence
of the spectra, the second mode frequency is taken to
be near 4.5 cpd.

d. The third and fourth Bay modes

The third Bay mode is represented by a small peak
near 5.8 cpd in the 1961 GB spectrum (Fig. 9). It may
also account for the “shoulder” on the second mode
peak in the 1963 spectrum, but it is absent at ES.
Fig. 8 shows only 209, elevation range at that station,
in contrast to the fourth mode (not illustrated) which
shows a relatively large amplitude in Little Bay du Noc,
in which ES is situated. A distinct peak at this frequency
is in fact seen at ES near 6.9 cpd, alongside another
distinct peak at the frequency of the third main basin
mode at 6.5 cpd. The fourth Bay mode is also repre-
sented by a subsidiary peak in the 1963 GB spectrum,
but is not distinct in the 1961 spectrum.

6. Summary

Theoretical calculations made to determine the
periods and structures of the two-dimensional normal
modes of Lake Michigan indicate that the spectrum of
normal modes contains some that are dominant in the
main basin of Lake Michigan and some that are
dominant in Green Bay. Our numerical grid gave
rather poor resolution for the Green Bay modes. Hence,
using the information (from this “crude” grid model)
about the location of the mouth for the co-oscillating
Green Bay mode, additional calculations were made
for Green Bay alone using the same grid interval as
before but with the major axis aligned along the length
of the bay and a finer grid of half the previous size.
Both these procedures yield a marked improvement in
results.

Focusing attention on the gravitational modes,
detailed comparisons were made of the periods and
structures obtained from theory and observations. The
observed characteristics were displayed in spectra of
water level fluctuations at several stations around the
Lake Michigan basin. The spectra indicate a high
degree of complexity in the free surface responses.
However, it was possible to identify several of the
lowest modes of the Lake and to obtain satisfactory
verification of the theoretical results. Verification of
the higher modes becomes progressively more difficult
because their structures increase in complexity and the
resolution of the observational network (11 shore-based
stations, Fig. 1) is limited.

H. MORTIMER AND D. J.

SCHWARB 587

PERIOD, HOURS
30 24 20 18 k6 14 12 1.0

TR L i \ i

lmﬂ‘."? 83,9 .

PA 6 8 ' 10 12 ' 1a ' 16  f8 20 ' 22 241
}\1 FREQUENCY, CYCLES PER DAY il
a1
a 2 95 % 2 .
! 1] confidence o 8
| 3 limits = <
Pl °
A\ el 4 3
| RA
|
i
‘ z
D ! PLUM ISLAND |=
=
| ey |2
| o
]
ESCANABA |
[
Q
wl
a
v
o
o

8- — - = ——

GB
1963
GB 1961
GREEN BAY
NORMAL MODES MAIN BASIN
( numbered) NORMAL MODES
1 2 3 4 A | { lettered )
I L4
Oc/d 2 & ' 6 B 1o 12 ' 1a 6 ' 18 ' 20 ' 22 o4

F16. 9. Spectra of water level fluctuations based on two months
of 15 min average levels at GB, Green Bay City (July—-August,
1961; January—February, 1963, under ice); 44 days of 30 min
average levels at ES, Escanaba (August-October, 1953); and
three months of 30 min average levels at PI, Plum Island (Aug-
ust-November, 1969). Numbered, unbroken vertical lines are
placed at the frequencies identified as those of “observed” oscilla-
tions corresponding to the Green Bay modes, defined in the text.
Lettered, broken vertical lines are those identified with Lake
Michigan main basin modes, transferred from Figs. 2 and 3.

Acknowledgments. Verification of our normal mode
calculations would not have been possible without the
water level records generously provided by the U. S.
Lake Survey (then U. S. Army Corps of Engineers,
F. Wayne Townsend, Chief, Hydrology Branch); the
Illinois Division of Waterways (records for stations
CW and WA); and the late R. L. Johnson (Michigan
Department of Health, records from Escanaba). Our
thanks are also due to C. Hutchings and to E. J. Fee
for computing the spectra. The work was performed
while Mortimer and Schwab were supported by the
Center for Great Lakes Studies, University of Wiscon-
sin-Milwaukee; and we are indebted to R. J. Ristic
for painstaking preparation of the figures, and to
D. F. Mraz for records from Plum Island.



588

REFERENCES

Comstock, D. B., 1872a: Irregular oscillations in surface of Lake
Michigan at Milwaukee. Ann. Rep. Survey Northern and
Northwestern Lakes, Appendix B, 14-15, in Report Sec. of
War to 3rd Session 42nd Congress, Vol. 2., Washington, D. C.
[U. S. Govt. Printing Office].

——, 1872b: Tides at Milwaukee, Wisconsin. Ann. Rep. Survey
Northern and Northwestern Lakes, Appendix A, 9-14, in
Report Sec. of War to 3rd Session 42nd Congress, Vol. 2.,
Washington, D. C. [U. S. Govt. Printing Office].

Defant, A., 1961: Physical Oceanography, Vol. 1. Pergamon Press,
729 pp.

Johnson, R. L., 1963: Tides and seiches in Green Bay. Proc. 6th
Conf. Great Lakes Research, Publ. 10, Great Lakes Res. Div.,
"University of Michigan, 51-58.

Mortimer, C. H., 1965: Spectra of long surface waves and tides in
Lake Michigan and at Green Bay, Wisconsin. Proc. 8th Conf.

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 6

Great Lakes Research, Publ. 13, Great Lakes Res. Div., Uni-
versity of Michigan, 304-325.

——, and E. J. Fee, 1976: Free surface oscillations and tides of
Lakes Michigan and Superior. Phil. Trans. Roy. Soc. London,
A281, 1-61.

Platzman, G. W., 1972: Two-dimensional free oscillations in nat-
ural basins. J. Phys. Oceanogr., 2, 117-138.

——, 1975: Normal modes of Atlantic and Indian Oceans. J. Phys.
Oceanogr., 5, 201-221.

Proudman, J., 1916: On the dynamical equations of the tides.
Proc. London Math. Soc., 2nd Ser., 18, 1-68.

Rao, D. B., 1966: Free gravitational oscillations in roating rec-
tangular basins. J. Fluid Mech., 24, 523-555.

——, and D. J. Schwab, 1976: Two-dimensional normal modes in
arbitrary enclosed basins on a rotating Earth: Application to
Lakes Ontario and Superior. Phil. Trans. Roy. Soc. London,
A281, 63-96.



