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1. INTRODUCTION

Tree-based statistical models are a recent development
in statistics which have been applied to diagnostic and
prediction problems in widely diverse fields of endeavor, but
are as yet not well known in the atmospheric sciences. These
are an alternative to linear and additive models for regression
problems and to linear logistic and additive logistic models
for classification problems. Much of the pioneering work in
tree-based statistical model development was done by
Breiman et al (1984) in their development of CART, which
stands for Classification and Regression Trees. CART is a
tree-based non-parametric statistical procedure for application
to classification and regression problems. Its authors find that
error rates of CART solutions are nearly always as low or
lower than solutions by parametric procedures such as linear
regression, logistic regression, and discriminant analysis, and
are significantly lower for problems involving complex
predictands and many predictors. The software for running
tree-based models can be obtained from its developers, and
more recently, has been included in the "S-Plus" statistical
software package (Chambers and Hastie, 1992).

From a data base of predictand cases and accompanying
predictors CART will establish decision trees that either
classify a categorical predictand or are a regression fit of the
predictand. A decision tree consists of a ree-like structure of
binary decision rules. At each decision point (node) a case
will branch either to the left or to the right based on a test
against a threshold predictor value, and will continue
branching in subsequent nodes until a final point (terminal
node) is reached. CART uses a cost-complexity measure
based on error rate and tree complexity to determine how
many nodes it will allow. It uses this measure to search for
the optimal tree, i.e. the tree which would give the least error
when used with independent data. The error is calculated with
a test data set held in reserve for data sets larger than about
1000 cases, or by cross-validation for smaller data sets. Both
categorical and continuous predictors are allowed, and linear
combinations of predictors can be tried. Several options for
determining node splitting rules are allowed. Predictors are
ranked in an ad-hoc manner according to their importance in
establishing the trees. The decision trees found in the work
reported here have proved to be appealing to users because
they are easy to understand and work with, and the decision
rules are nearly always found to make physical sense.

Use of CART in a classification application was reported
in Burrows (1991). In that paper a tree-based statistical model
was developed for mesoscale prediction of snowfall from
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lake-effect snowsqualls. The model has been implemented at
the Ontario Weather Center, The forecasts have been found
by the operational forecasters to be accurate and useful, and
the guidance is now used routinely in the office.

The application of CART reported in this paper is the
development of a tree-based statistical regression model for
prediction of ice-cover on the Great Lakes. Observed
spatially-averaged ice-cover for the winter months
December-April of 1965-1979 for six large basins defined in
Assel (1990) for Lakes Superior and Erie were used as the
leaming data to develop tree-based regression prediction
models for each basin. Eight potential predictors relevant to
this problem were used. Three tree-based ice-cover statistical
prediction models were developed for each basin and used
with some simple selection rules to produce a final model for
daily ice-cover prediction in each basin for early November
to late May. The models have approximately 1/3 to 2/3 the
RMS error of Assel's (1990) freezing-degree-day (FDD)
model in fitting the observed data. When applied to
independent data they are expected to be capable of
predicting percentage ice-cover for Lake Superior with about
10-20% error and for Lake Erie with about 15-20% error. The
new models should be suitable for prediction of daily to
weekly spatally-averaged ice-cover in numerical weather and
climate prediction models and for diagnosis of expected daily
ice-cover in Lakes Erie and Superior by operational agencies.
Work to produce models for the basins in the other Great
Lakes is planned. A description of the models is given in
Section 2. Discussion is limited since much of the work was
completed just prior to the deadline for this article.

2. TREE-BASED REGRESSION PROBLEM

The goal was to produce a tree-based statistical model
for daily prediction of spatially-averaged ice-cover for large
basins on the Great Lakes for November to May to be used in
numerical weather and climate prediction models, and to
provide a means for diagnosis of expected daily to weekly
ice-cover by operational agencies. Potential predictors were
designed from three considerations: characteristics of winter
airmasses and wind conditions affecting a basin, the solar
radiation cycle, and the FDD model's daily predictions. The
predictand was observed spatially-averaged ice-cover for the
winter months December-April of 1965-1979 for each of the
six basins defined in Figure 1 for Lakes Superior and Erie.
Work to produce models for the other Great Lakes is planned.




For two reasons the task of building a statistical
prediction model for ice-cover proved more complex than
merely fitting the observed data and using the fit to make
daily predictions. The first reason results from the availability
of observed ice-cover sporadically rather than every day.
Observations for most basins are rather infrequent from late
December until mid-late February and more frequent from
then to early-mid April, but even then consecutive daily
observations are rare. Even though CART fits the observed
data very well, there can be large day-to-day fluctuation of
the ice-cover predictions for some periods in between the
days on which observations are available due to model
sensitivity to certain predictors, such as wind speed. At times
for some basins large fluctuations actually occur as wind
advects the ice, and this is reflected in the observations.
Decisions must be made about the extent of day-to-day
variability to accept in a prediction model Another
consequence of using a fit of the observed data alone is that
large errors in the predictions of ice can occur for the mostly
ice-free periods November-December and late April-May for
most basins, times for which no observed data is available.
Thus the FDD model, which makes a daily prediction for
November 1 to May 31, is needed here. The second reason
for complication is due to a peculiarity of tree-based
statistical regression models, and is called here the "flip-flop
problem”, It occurs when predictor values are close to the
threshold values in the decision trees. The resulting answer
can vary wildly from day-to-day because the decision is "flip-
flopping” from the left branch to the right branch of the tree.
This problem is the most troublesome during periods of rapid
changes in ice-cover, but can occasionally occur at any time.
The solution to the above all was to produce daily predictions
by three methods and use some simple selection rules to
produce a final result.

Three sets of tree-based statistical models were produced
for each basin: two regression models which fit the observed
percent ice~cover data and a six-category classification model
which fit the original daily FDD model prediction data.
Predictors are explained in Section 3.1. Observed and FDD
model data are available as percent ice-cover, ranging from 0-
100%. The original FDD model percent ice-cover prediction
data was available every day from November 1 1965 to May
31 1983, excluding the summer period. This was converted to
six categories: 0%, >0-20%, >20-40%, >40-60%, >60-80%,
and >80-100%. One of the tree-based models which fit
observed data included the original FDD model ice-cover
prediction as a categorical predictor, and one did not. The
original FDD model data was fit by CART with atmospheric
and solar radiation predictors. The two observed-data CART
models and the CART FDD model were run daily from
November 1 1965 to May 31 1983, The CART FDD model
was used to generate a daily FDD categorical ice-cover
prediction as an input predictor to the observed-data model
which included the original FDD data as a predictor. This
procedure eliminates explicit dependence on the FDD model
and thus the need to directly predict surface temperature and
to know in advance when the date of maximum freezing
degree days would be reached in a winter. The three sets of
daily ice-cover predictions were scanned for each basin in
order to formulate simple selection rules that yield a single
prediction for each basin for each day from November 1 to
May 31,

2.1 PREDICTORS

Sixteen predictors were originally tried. Several runs
were made trying various combinations of predictors, with
the eight predictors shown in Table 1 found to give the best
overall results. Linear combinations of predictors were not
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found to improve the results. Atmospheric predictors were
calculated with the U.S. National Meteorological Center
(NMC) 47x51 381 km grid-point analysis data for 0000 UTC
and 1200 UTC obtained from the National Center for
Atmospheric Research (NCAR). A 1000-mb geostrophic
wind direction was determined at each analysis time in the
center of each basin in order to calculate amospheric
predictors at the nearest onshore basin boundary location
upwind from the basin center. Boundary points were
distributed approximately every 50-km around each basin, An
850-mb temperature predictor was used in place of surface
temperature  predictor due to occasional bad surface
temperature data in the NCAR data base, particularly in the
years 1977-1979, and because surface temperature can be
notoriously variable in weather and climate model
predictions. The seasonal solar radiation cycle was
parameterized with a simple sine function.

2.2RESULTS

CART initially produces a tree which fits all the data
perfectly then finds a series of increasingly less complex trees
by systematically reducing the number of decision nodes
(known as pruning) until only one node remains. The error of
each tree when applied to independent data is estimated for
large data sets (more than about 1000 cases) by reserving a
portion of the leamning data for testing and building the trees
with the remaining data, and for small data sets by estimating
the error with by cross-validation. CART decision trees were
produced for the scenarios described in the introduction to
Section 3. Regression trees which fit the observed data
("OBS:FDD-IN" and "OBS:FDD-OUT" models) were
constructed with the "least absojute deviation (LAD)" of ice-
cover values of cases within a node, while errors in applying
these trees to independent data were estimated by "10-fold
cross-validation”. Classification trees which fit the FDD
model data ("CART-FDD") were constructed with the
"ordered-twoing” option, while errors when applying these
trees to independent data were estimated by reserving 1/3 of
the original data sample as a test sample. The final trees
selected for use were those found to have the minimum
estimated error or close to it in a few cases where that tree
had very few nodes.

An error summary for the decision trees is given in
Table 2. Errors for the observed-data-fit decision trees are
expressed as percent ice-cover, and errors for the FDD
model-data-fit decision trees are expressed as the fraction of
misclassified data. We see that using the FDD model data as
a predictor lowers the fit-error of the trees for all but the Erie-
East basin. When using the observed-data-fit trees with
independent data, the error of the ice-cover percentage
prediction for the Lake Superior basins is estimated to be
about 10-20%, and about 15-20% for the Lake Erie basins.
This is a respectable result, considering the error in the ice-
cover observations themselves is about 10%.

Table 3 shows the importance ranking of predictors. The
airmass indicator predictors AVTHK, CUMTHK, and
AVTEMS850, along with FDDMODEL are the overall most
important for all basins. The solar radiation predictor
SINEDATE was next in overall importance, and was
relatively more important for Lake Erie than Lake Superior.
The least important predictors were QAD700, which is
related to cloud cover, and the daily wind speed predictor
DAYSPEED.

The next step was to make a model for daily ice-cover
predictions. The CART-FDD, OBS:FDD-IN, and OBS:FDD-
OUT models were re-run for each basin each day from



November 01 1965 May 31 1983, The prediction by CART-
FDD provided the categorical ice-cover FDD input predictor
for the OBS:FDD-IN prediction, thus eliminating explicit
dependence on the FDD model. The daily predictions by all
three were scanned for some simple selection rules to provide
a final daily prediction model, (CART-SR model). These
arbitrary rules are formulated with the basic philosophy of
staying close to the FDDMODEL prediction for the
November to mid December and late April to end of May
periods; using the OBS:FDD-OUT prediction for the early
winter freeze-up and spring melt-down periods of rapid ice-
cover change, when the FDD model is likely to have large
error; using the OBS:FDD-IN prediction for the winter
period; and checking that the rules did not increase overall
error of the fit of the observed data. The flip-flop problem
must also be dealt with in the rules. Table 4 shows the
predictions for the Erie-Center and adjacent Erie-East basins
for January 11 - February 2, 1976, a period of rapidly
increasing ice-cover. Several points are illustrated here. The
observations of spatially averaged ice-cover are not
continuously available in time. The CART tree-based
regression ice-cover prediction values are generally much
closer to the observed ice-cover values than are the original
FDD model values. The tree-based values jump non-
continuously in time as the terminal decision nodes change
because the value in each node is a least-absolute-deviation
value of the ice-cover of all the cases in the node. This is not
always cause for alarm - there is considerable fluctuation in
the observations themselves, which the smoothly varying
FDD medel does not handle, but which is handled by the
CART models. The CART-SR predictions for both basins
change over from the OBS:FDD-OUT model to the
OBS:FDD-IN model in late January. The flip-flop problem
struck the Erie-Center CART-FDD and OBS:FDD-IN
predictions January 22 and OBS:FDD-OUT predictions
January 28-31. The CART-SR model selection rules detected
this and switched the CART-SR predictions to the opposite
model in both occurrences.

Table 5 shows errors for the fit of the observations by
the different models and of the CART fit of the FDD model.
Comparing the absolute value errors in column 2 with the
numbers in column 3 of Table 2 shows that using the CART-
FDD prediction for OBS:FDD-IN model does not
substantially affect the accuracy of the prediction. The
CART-SR model error is close to that of the OBS:FDD-IN
and OBS:FDD-OUT models. All of the CART tree-based
models are seen to have substantially less error than the
original FDD model.

3. CONCLUDING REMARKS

Two examples of using a tree-based statistical model
(CART) to develop diagnostic and prediction models for
atmospheric science problems were mentioned. The tree-
based classification snowsquall prediction model is already in
operational use at the Ontario Weather Center and has been
found by the forecasters to be accurate and useful for
mesoscale prediction of location and snow amounts from
lake-effect snowsqualls. The tree-based regression models for
prediction of spatially-averaged ice-cover have 1/3 to 2/3 of
the error of Assel's freezing degree day model and are
capable of predicting daily ice-cover to within 10-20% for the
Lake Superior basins and 15-20% for the Lake Erie basins.
These models proved particularly adept at handling ice-cover
in the Superior-Whitefish Bay and the three Lake Erie basins,
where ice-cover can be highly variable from day to day.
Work is planned to develop models for basins on the other
Great Lakes.
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Tree-based statistical models are a relatvely new
development. Based on the success of CART for the two
quite different applications mentioned here, the use of CART
for other applications in the atmospheric and environmental
sciences is encouraged.
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Table 1: Potential predictors used to establish regression
decision trees for ice-cover on the basins shown in Figure 3.

1. FDDMODEL - Assel (1990) freezing-degree-day model
value of percent ice-cover in 6 categories: 0, >0-20,
>20-40, >40-60, >60-80, >80-100.

2. AVTHK - average 700-mb to 1000-mb thickness in meters
from November 1 to the current day. Slowly decreases
from a maximum near November 1 t0 2 minimum in
late winter then slowly increases.

3. CUMTHK - cumulated 700-mb to 1000-mb thickness
minus 2800 meters from November | to the current
day. 2800 meters thickness corresponds roughly 10 a
surface temperature of 0 deg C. Same variation as

AVTHK.
4. AVZ1000 - average 1000-mb height from November 1 to
the current day.
5. AVTEMS850- average 850-mb temperature from

November 1 to the current day.

6. DAYSPEED - 1000-mb geostrophic wind speed in meters
per second over the basin center for the current day.

7. QAD700 - 700-mb advection of absolute vorticity over the
center of the basin for the current day. This should be
related to middle-level cloud.

8. SINEDATE - the sine of two pi times (the day number
from November 1 minus 141). Has negative value
before March 21 and positive value after. Varies fastest
at spring equinox and slowest at winter solstice. For
parameterization of solar radiation.
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Figure 1: West, east, and Whitefish Bay basins of Lake
Superior and west, center, and east basins of Lake Erie, from
Assel (1990).

Table 2: For each basin: column (1) number of observations
available for growing CART decision trees; column (2)
number of terminal decision nodes in trees selected for use;
column (3) summary of error of fit of leaming data fit;
column (4) estimated error when decision trees are used with
independent data. Errors for OBS:FDD-IN and OBS:FDD-
OUT regression trees are ice-cover percent, errors for CART-
FDD classification trees are fraction of events misclassified.

ERIE - WEST

OBS:FDD-IN 176 38 45% 15.1%
OBS:FDD-OUT 176 28 6.6 % 16.9
CART-FDD 3757 199 .008 .106
ERIE - CENTER

OBS:FDD-IN 101 30 29% 15.1%
OBS:FDD-OUT 101 28 45 % 209%
CART-FDD 3757 190 .004 097
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ERIE - EAST

OBS:FDD-IN 182 22 6.8 % 14.0%
OBSFDD-OUT 182 28 6.5 % 15.4%
CART-FDD 3757 190 004 109
SUPERIOR - WEST

OBS:FDD-IN 69 14 6.7% 19.8%
OBS:FDD-OUT 69 17 6.7% 20.4%
CART-FDD 3757 204 .005 086
SUPERIOR - EAST

OBS:FDD-IN 48 21 1.6 % 15.8%
OBS:FDD-OUT 48 20 20% 17.0%
CART-FDD 3757 156 .011 .089
SUPERIOR - WHITEFISH BAY

OBS:FDD-IN 340 60 28 % 9.5%
OBSFDD-OUT 340 9 17 % 10.5%
CART-FDD 3757 209 .004 .084

Table 3: CART ranking of predictors based on the number of
times each predictor is used in the total process for finding
the best tree. Rankings are on a scale of 0-100. Shown are the
predictor rankings for each of the basins.

SUPERIOR WEST

CART - FDD CART - FDD CART FIT OF
MODEL IN MODEL NOT IN FDDMODEL
AVTHK 100 AVTHK 100 AVTEMBS50 100
FDDMODEL 80 AVZ1000 85 CUMTHK 80
AVTEM850 75 AVTEMB850 58 SINEDATE 58
AV21000 n CUMTEK 57 AVITEK 38
CUMTHK 54 SINEDATE 53 AVZ1000 29
SINEDATE 49 DAYSPEED S50 QAD700 7
QAD700 40 QAD700 32

DAYSPEED 18

SUPERIQR EAST

CART - FDD CART ~ FDD CART FIT OF
MODEL IN MODEL NOT IN FDD MODEL
AVTHK 100 AVTHK 100 AVTEM850 100
FDDMODEL 67 CUMTHK 58 CUMTHK 78
CUMTHK 59 DAYSPEED 57 SINEDATE 65
AVZ1000 58 AVZ1000 4% AVTHK 41
DAYSPEED 51 AVTEMB50 46 AvVz1000 24
AVTEM850 43 SINEDATE 39 QAD700 6
SINEDATE 35 QAD700 18

QAD700 17

SUPERIOR WHITEFISHE BAY

CART -~ FDD CART - FDD CART FIT OF
MODEL IN MODEL NOT IN FDD MODEL
AVTEM850 100 AVTEMS850 100 CUMTHK 100
AVTHK 93 CUMTHK 88 AVTEM850 96
CUMTEK 89 AVTHK 88 SINEDATE 70
FDDMODEL 78 SINEDATE 74 AVTHK 53
SINEDATE 77 QAD700 42 AVZ1000 30
QAD700 52 AVZ1000 32

AVZ1000 38 DAYSPEED 25

DAYSPEED 29



ERIE WEST
CART - FDD CART - FDD CART FIT OF
MODEL IN MODEL NOT IN FDD MODEL
SINEDATE 100 SINEDATE 100 CUMTHK 100
FDDMODEL 97 CUMTHK 83 AVTEMB50 93
CUMTHK 84 AVTEM850 56 AVTHK 90
AVTHK 61 AVZ1000 53 SINEDATE 83
AVZ1000 S0 AVTHK 493 AVZ1000 31
QAD700 49 DAYSPEED 34 QAD700 10
AVTEM850 41 QAD700 28
DAYSPEED 33
ERIE EAST
CART - FDD CART - FDD CART FIT OF
MODEL IN MODEL NOT IN FDD MODEL
FDDMODEL 100 AVTHK 100 CUMTHK 100
AVTHK 84 CUMTHK 88 AVTEM850 74
CUMTHK 80 SINEDATE 83 SINEDATE 67
SINEDATE 56 AVTEMB8S50 75 AVTHK 54
AVTEMB50 56 AVZ1000 42 AVZ1000 37
AVZ1000 40 DAYSPEED 21 QAD700 10
DAYSPEED 29 QAD700 21
QAD700 = 27
ERIE CENTER
CART - FDD CART - FDD CART FIT OF
MODEL IN MODEL NOT IN FDD MODEL
FDDMODEL 100 SINEDATE 100 CUMTHK 100
CUMTHK 97 AVTHK 93 AVTEMSS0 73
SINEDATE 94 AVTEM850 90 SINEDATE 60
AVTHK 87 AVZ1000 58 AVTHK 52
AVTEM850 69 QAD700 27 AVZ1000 42
AVZ1000 43 QAD700 14
QAD700 38
DAYSPEED 35
Table 4: For January 11 - February 2, 1976: observations and
model values of spatially-averaged ice-cover for Erie-East
basin and Erie-Center basin. Numbers in columns as follows:
(1) date - year, month, day; (2) observed ice-cover (%), 9999
= no observation; (3) OBS:FDD-IN model ice-cover (%); (4)
OBS:FDD-OUT model ice-cover (%); (5) CART-SR model
ice-cover; (6) 3-day smoothed CART-SR model ice-cover
(%); (7) original FDD model ice-cover (%); (8) original FDD
model ice-cover category (1-6); (9) CART fit of FDD ice-
cover category (1-6).

165

ERIEEAST

1 2
760111 9999
760112 9999
760113 9999
760114 9
760115 25
760116 9999
760117 74
760118 9999
760119 9999
760120 22
760121 9999
760122 33
760123 9999
760124 86
760125 9999
760126 44
760127 52
760128 9999
760129 9999
760130 9999
760131 9999
760201 9999
760202 9999
760203 86
ERIE CENTER

1 2
760111 9999
760112 9999
760113 9999
760114 17
760115 9999
760116 9999
760117 74
760118 9999
760119 9999
760120 72
760121 9999
760122 79
760123 9999
760124 9999
760125 9999
760126 72
760127 81
760128 9999
760129 9999
760130 9999
760131 9999
760201 9999
760202 9999
760203 90

17
17
17
17
17
17
79
79
79

79

79
79
79

79
97
79
79
89
79

89

4

22
22
22
22
22
74
22
22
22
22
30
30
86
86
52
52
86
86
86
86
86
86
86

6

15
22
22
22
22
39
39
39
22
22
25
27
49
67
75
63
63
77
91
94
94
94
94

7

41
43

45
48
49
55
61

65

75
78
79
78
78
80
81
82
84
85
88
g9
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Table 5: RMS errors and average absolute value of errors for
each basin. Columns: errors for the fits of observed ice-cover
data for predictions by: (1) OBS:FDD-OUT model; (2)
OBS:FDD-IN model; (3) CART-SR model; (4) running 3-day
average of CART-SR model; (5) the origial FDD model; (6)
CART-FDD fit of the FDD categorical data,

1 2 3 4 5 6

SUPERIOR 108 10.8 119 166 2441 0.26
WEST

SUPERIOR 3.7 8.6 79 114 151 0.05
EAST

SUPERIOR 148 7.7 83 115 172 023
WHITEFISH :
BAY

ERIE 11.9 9.7 97 116 200 0.37
WEST

ERIE 7.8 10.8 8.8 122 233 041
CENTER

ERIE 98 124 100 127 183 0.37
EAST

SUPERIOR 2.0 2.8 27 6.1 125 0.05
EAST

SUPERIOR 6.9 6.7 76 95 213 0.03
WEST

SUPERIOR 7.8 33 3.6 6.3 108 0.03
WHITEFISH
BAY

ERIE 6.4 7.8 6.5 8.5 142 0.06
EAST

ERIE 6.8 5.5 5.5 78 149 0.07
WEST

ERIE 4.6 4.9 4.2 77 1179 0.06
CENTER
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