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Abstract: Many researchers use outputs from large-scale global circulation models of the 
atmosphere to assess hydrological and other impacts associated with climate change. How- 
ever, these models cannot capture all climate variations since the physical processes are 
imperfectly understood and are poorly represented at smaller regional scales. This paper 
statistically compares model outputs from the global circulation model of the Geophysi- 
cal Fluid Dynamics Laboratory to historical data for the United States' Laurentian Great 
Lakes and for the Emba and Ural River basins in the Commonwealth of Independent States 
(C.I.S.). We use maximum entropy spectral analysis to compare model and data time se- 
ries, allowing us to both assess statistical predictabilities and to describe the time series 
in both time and frequency domains. This comparison initiates assessments of the model's 
representation of the real world and suggests areas of model improvement. 
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1 In t roduc t ion  

Large-scale general circulation models (GCMs) of the earth's atmosphere are be- 
ing used to simulate climate changes, typically over a few decades, and to estimate 
hydrologicaI impacts associated with various climate changes. Climate scenarios, de- 
veloped from different GCMs, are used to assess changes in the properties of hydro- 
logical parameters caused by anthropogenically-induced climate change; see USEPA 
(1984, 1988), Cohen (1986, 1987), and Croley (1990). Recently, the Water Problems 
Institute, the Soviet Geophysical Committee, and the Great Lakes Environmental Re- 
search Laboratory started a cooperative U.S.S.R. - U.S. project to assess hydrological 
impacts of climate change over the Caspian Sea Basin. 

The GCMs produce daily values of major meteorological parameters (air tem- 
perature and pressure, precipitation, run-off, etc.) at  the nodes of grids defined at  
approximately 4 to 8 degrees latitude by 5 to 10 degrees longitude. Although the qual- 
ity of climate reproduction that can be achieved with these models still is insufficient, 
many researchers modify historical data sets with GCM scenarios and use these data 
sets with detailed regional models to predict both natural and anthropogenic changes 
of climate. These models can give erroneous pictures of mean spatial distributions of 



Figure 1. Location and GCM gidpoints for the Emba and Ural River basins and the U.S. 
Great Lakes basin 

major climatic parameters, such as air pressure, over large portions of the northern 
hemisphere (Wigley and Santer, 1988). Corrections can consist of improved coupling 
of atmospheric and oceanic models, faster computers, and higher spatial resolution, 
as well as other physical and numerical means. Hopefully, this will lead eventually 
to models capable of a much better reproduction of the actual spatial distribution of 
major climatic parameters. 

However, improved models never can capture all temporal variations in climate 
since there is inherent stochasticity in the physical processes with respect to current 
scientific knowledge of these processes (WMO, 1975). Furthermore, a model's ability 
to give an accurate average picture of climate does not mean necessarily that it cor- 
rectly describes climatic variability. Finally, there is some question of the applicability 
of GCMs to regional-scale studies. 

By comparing statistical properties of actual and GCM-simulated climates, we 
may verify the model's representation of nature and suggest areas of model improve- 
ment for further research. This paper describes this comparison for the Geophysical 
Fluid Dynamics Laboratory (GFDL) GCM and two regions: the Emba and Ural 
River basins in Russia and Kazakhstan, and the basin of the Laurentian Great Lakes, 
in the North American continent (Fig. 1). 

2 Data sets 

Actual historical meteorology and GCM-simulated time series of monthly air temper- 
ature and precipitation are compared for the Great Lakes basin, in the United States, 
and the basins of the Emba and Ural Rivers, in Russia and Kazakhstan. 

Daily precipitation and minimum and maximum daily air temperatures are avail- 
able from 1,569 stations for the Laurentian Great Lakes basin (covering a land area 
of about 522,000 km2) between 1900-88 and from 58 stations for the Emba and Ural 
river basins (covering a combined area of over 377,000 km2) between 1955-76. The 
data for the Great Lakes were obtained from the U.S. National Climatic Data Cen- 
ter, and the Russian and Kazakhstan basin data were obtained from The All-Union 

data were reduced to daily areal averlges over these ba'sins through Thiessen averag- 
ing (Croley and Hartmann, 1985, 1986; Croley and Ferronsky, 1990a,b). Consistency 
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checks were performed to identify and correct data errors in the records (Croley et 
al., 1991). Data availability appears very good for these basins. The GreakLakes 
basin data set was truncated to the same 22 years available for the Emba a d  Ural 
Basins (Emba/Ural basin) to allow direct comparisons between the two sets 5f data. 
Both daily time series were reduced to monthly data, after a preliminary statistical 
analysis, to agree with the available GCM output format. 

The GCM used here was developed at the Geophysical Fuild Dynamics Labo- 
ratory (Manabe and Wetherald, 1987) and used to simulate, for present-day C02 
concentrations, 10 years of daily maximum and minimum air temperature and daily 
precipitation (among other variables); see Jenny (1988). This GCM has a spatial res- 
olution of 4.4" latitude by 7.5O longitude (about 520 km by 510 km at 45ON latitude). 
The model's grid points are depicted in Fig. 1. 

3 Proper t i e s  t o  be compared 

Besides major statistical parameters such as mean and root mean square (RMS) val- 
ues, we compare the following statistical characteristics of the actual and simulated 
monthly air temperature and precipitation time series for each basin: i) sample proba- 
bility distributions, ii) seasonal trends, iii) spectral densities and, whenever practical, 
autoregressive (AR) models in the time domain, and iv) parameters of statistical pre- 
dictability. Daily air temperature is taken as the average of the daily maximum and 
minimum air temperatures. Seasonal trends in all time series are estimated by aver- 
aging values for each month of the year, and the time series resulting by subtraction 
of seasonal trends are referred to as "deseasonalized" in what follows. 

The time series are relatively short (264 months for the actual and 120 months for 
the simulated time series). This means that traditional techniques of spectral anal- 
ysis will give statistically unreliable results. Therefore, we apply maximum entropy 
spectral analysis, which is designed to analyze relatively short time series. It has two 
other advantages especially useful for this study. First, it leads to an immediate and 
simple solution of the least-squares prediction problem inside the framework of the 
Kolmogorov-Wiener theory, thus enabling us to assess statistical predictability of our 
processes. Second, as the technique is based upon fitting autoregressive (AR) models 
to the time series, it gives simultaneous description of the time series in both the fre- 
quency and time domains (spectral density and respective linear stochastic difference 
equations). For a thorough description of the theory of this approach see Yaglom 
(1987). 

Four criteria are used to choose the best AR-approximation to the time series: 
Akaike's information criteria (AIC), Parzen's CAT, Schwarz-Rissanen's BIC, and 
Hannan-Quinn's HQ. In those cases where different criteria indicate different AR 
orders for the same time series, the AIC is used as a rule. Models containing the 
moving-average operator were not studied because of their computational instability 
(Privalsky, 1985; Yaglom, 1987). 

The parameters of statistical predictability include the relative prediction error 
(RPE) at one step (one month) lead time and the limit of statistical predictability 
(LISP). Their meaning is explained below. 

Consider an autoregressive model of order p for time series z t  with AR coefficients 
4; : 

where at is a sequence of (mutually) independent identically distributed random vari- 



ables and t is time. The spectrum of z t  is found as 

where u: is the variance of at and At is the time increment between successive values 
of zt (Box and Jenkins, 1970). The least-squares prediction &(T) of z t  at lead time 
T starting at t is 

P 

i t ( ~ )  = C d;&t(r - i )  
i=l 

(3) 

where $47 - i )  = xt-; for t 5 i. Thus, at is the prediction error and a: is its 
variance, at the unit lead time, T = 1. Its ratio to the time series variance 

dp(l) = u:/u: (4) 

is called the (one-step) relative prediction error (RPE). 
Obviously, the prediction error at lead time T is 6 , (~ )  = zt+, - zt(r) ,  and i t  can 

be easily shown (see Box and Jenkins, 1970) that the prediction error variance is 

where pi are the coefficients of the inverse autoregressive operator. In the stationary 
case, which is the case considered here, the variance Dp(r) tends to a: as T tends to 
infinity. Thus, RPE 

dP(7) = DP(T)Ifl: (5) 
lies between zero (singular process) and unity (purely random process, or white noise).. 
Note that the correlation coefficient rP(T) between the actual value of the time series 
and its prediction at lead time T can be found as 

T ~ ( T )  = 1 - dp(r). 

Finally, the limit of statistical predictability (LISP) T,, of time series zt ,  is defined as 
the lead time T, at which RPE reaches a prespecified value a 1. We will assume 
a = 0.9. This value also is called predictability horizon (Privalsky, 1985, 1988). 

Equations (4), (5), and LISP 70.9 define the measures of statistical predictability 
used in this study to compare the properties of the actual and simulated climatic 
time series. They all describe the persistence of the time series. Note that the actual 
predictability will be smaller because we only have estimates of AR parameters p, 4;, 
and u: (Box and Jenkins, 1970). However, this fact is of no importance to us because 
the cirteria of predictability are used only to describe statistical properties of our time 
series. Actual predictions will not be made here because of their low accuracy. 

4 Comparisons 

Since we have only 10 years of simulated climate but 22 years of actual observations, 
we will compare these time series of different lengths rather than breaking the actual 
time series into two series of 11 years each. Two types of comparisons are made 
for time series with and without seasonal trends: first, we compare the data sets as 
samples of random variables (that is, estimate the probability density functions and 
their parameters) and then we compare them as sample records of random processes 
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of linear AR models with constant parameters. [Actually, multiplicative AR models - .  
(Box and Jenkins, 1970), 
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Figure 2. Actual and GCM-simulated mean monthly air temperatures in the U.S. Great 
Lakes basin 

have also been analyzed for all our time series but we decided not to include them 
into this study because they give a seasonal trend more regular than observed in the 
time series.] 

4.1 Air temperature 

As seen from Fig. 2, the GCM-simulated air temperature in the Great Lakes basin 
behaves in about the same manner as the actual temperature with more range in the 
modeled time series. This is also true for the Emba/Ural basin (not shown). This 
observation is documented by respective estimates of mean and RMS values (Table 
1). As seen from the table, mean and RMS values for the actual and simulated air 
temperature do not differ much both before and after deseasonalizing for both basins. 
They also have about the same predictability parameters RPE 4 ( 1 )  and LISP 70.9. 

Although different criteria may lead to different models for any particular time series, 
respective values for predictability parameters (shown in parentheses in Table 1 for 
criteria other than AIC) do not differ drastically. Thus, for the Emba/Ural basin 
time series of air temperature, the AIC indicates an AR model of order p = 26 
while the BIC indicates p = 12; however, respective RPEs differ by just 0.6% (4.5% 
versus 5.1%) with both LISPS exceeding 100 months. The mean and RMS values 
of the actual and simulated air temperature are statistically equivalent at the 95% 
significance level (see Table 2). 

Another important factor is the shape of the sample probability distribution func- 
tions for the actual and simulated time series of air temperature. To avoid effects 
related to differences in sample mean values and variances, the time series were trans- 
formed to zero mean and unit variance before com~arisons. Then the Kolmogorov- " 
Smirnov two-sample test were used to  compare the shapes of the cumulative distribu- 
tion functions (CDFs) of the actual and simulated air temperatures. The comparisons 
showed that the shapes of the CDFs of these transformed actual and simulated data 
differ significantly only for non-deseasonalized air temperature in the Emba/Ural 
basin (see Table 2), suggesting that the seasonal trend is not reproduced correctly by 



Table 1. Comparison of actual and simulated climate mean monthly air temperature 
Mean R M S  p 40) 70.9 

Value 
"C OC % months 

Emba/Ural basin 
Raw data: Actual 5.3 13.4 26 (12, 21)" 4.5 (5.1, 4.7) > 100 

GCM 6.5 13.6 11 6.3 > 100 
Deseasonalized: Actual 2.5 1 96 1 

GCM 2.6 12 (1) 82 (90) 2 (1) 

Great Lakes basin 
Raw data: Actual 5.5 10.2 20 (16, 8) 3.3 (3.4, 3.7) > 100 

GCM 3.6 14.3 12 3.3 > 100 
Deseasonalized: Actual 1.66 25 (0, 1) 88 (99) 

GCM 2.13 1 96 
4 (0) 
0 

'Predictability parameters for criteria other than AIC are shown in parentheses 

Table 2. Hypotheses rejection (R) or non-rejection (A) of equivalence between historical 
and GCM parameters at 95% significance level 

Air Temperature Precipitation 
Emba/Ural Great Lakes Emba Ural Great Lakes 

Parameter Raw Deseas. Raw Deseas. Raw Deseas. Raw Deseas. 
Data Data Data Data 

Mean A A R R 
Variance A A A A R R A A 
C.D.F. R A A A A A A A 

the GCM for this basin. The results of the comparisons shown in Table 2 also suggest 
that the GCM simulates time series of mean monthly air temperature with acceptable 
mean and variance values both before and after the seasonal cycle is removed on both 
the Great Lakes and the Emba/Ural basins. 

Now, even when actual and simulated temperature data, regarded as samples of 
random variables, do coincide statistically, that does not mean that the model success- 
fully reproduces climatic parameters as random processes. To check its adequancy in 
this respect, we compared spectral densities and predictability parameters of the ac- 
tual and simulated time series. The spectra of mean monthly air temperature, shown 
in Fig. 3 for the Emba/Ural basin, correspond to AR models of order p = 26 for 
the actual and p = 11 for the simulated time series. Figure 3 also shows spectra for 
mean monthly air temperature in the Great Lakes basin corresponding to AR models 
with p = 20 for the actual and p = 12 for the simulated time series. These are the 
autoregressive models identified in Table 1. The spectra reveal strong peaks at the 
seasonal trend frequency f = 1.0 cycle per year (cpy) and at  its higher harmonics 
for all time series. 

The range of the seasonal trend seems to be greater in the simulated time series 
for both basins (see Fig. 2). Indeed, the difference between the average ranges in the 
simulated and actual average seasonal trends amounts to only 2OC in the Emba/Ural 
basin (the average ranges o i  actual and simulated mean seasonal trends are 3 6 0 ~  and 

The latter figure-looks quite impressive. The seasonal extremes of air tempdrature are 
reproduced by the GCM reasonably except for the seasonal maximum in the Great 
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Figure 3. Spectra of actual and GCM-simulated monthly air temperatures in the Emba- 
Ural and the U.S. Great Lakes basins 

Figure 4. Average seasonal trend and 90% confidence limits in monthly air temperature 
on the Emba-Ural and the U.S. Great Lakes basins 

Lakes basin, which is shifted from July to August (see Fig. 4). Note that the middle 
lines in Fig. 4 correspond to the average seasonal trends while the other two lines 
show the respective 90% confidence limits. 

As seen from Fig. 4, the model generates time series of air temperature with about 
the same degree of regularity in summer but less distinct in winter. The 90% confi- 
dence bands for the estimates of seasonal trend are wider in the simulated series by 2 
or 3°C in winter time for both basins. The confidence bands for the seasonal trends 
in the actual and simulated temperature overlap for all months except November 
and December in the Great Lakes basin. This means that the differences in seasonal 
trends between the actual and simulated data are mostly insignificant statistically. 
Naturally, the seasonal trend is greater and more variable in the EmbaIUral basin 
due to its sharply continental climate. 

The regularity of the seasonal trend in the actual and simulated time series of 
temperature is also seen from the form of the respective spectra. Quantitative esti- 
mates can be obtained by analyzing statistical predictability parameters. Obviously, 
for any process with a strong predominance of seasonal trend, RPE dp(l) should be 
very small, with LISP 70.9 extending to many months. Indeed, this is what happens 
for both the Emba/Ural basin and the Graet Lakes basin ( T ~ , ~  exceeds 100 months, 
see Table 1). However, in the Emba/Ural basin the seasonal trend seems to be more 
blurred in the simulated series than in the actual one because RPE dP(7) increases 
much faster for the former series (see Fig. 5). In the Great Lakes basin, the simu- 
lated and actual time series possess about the same regularity in their seasonal trend 
(see Fig. 5). Finally, the seasonal cycle in the simulated series is less regular in the 
Emba/Ural basin than in the Great Lakes basin while, for actual temperatures, their 
predictability properties are very similar (bottom curves in Fig. 5). 
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Figure 5. Relative prediction error dp(7 )  for monthly air temperatures on the Emba-Ural 
and the U.S. Great Lakes basins 

Figure 6. Spectra of actual and GCM-simulated deseasonalized monthly air temperatures 
and selected AR models for the Emba-Ural and the U.S. Great Lakes basins with selected 
trends removed 

When the seasonal trends are removed from Fig. 2 (not shown), both the simulated - \ , . 
and actual air temperatures behave almost as white noise. Figure 6 shows spectra 
of deseasonalized time series and selected AR models of those deseasonalized time 
series chosen according to different criteria. Thus, the two spectra identified as GCM 
(AIC, CAT) and GCM (BIC, HQ) in Fig. 6 represent AR models of the same time 
series of deseasonalized GCM-simulated monthly air temperature in the EmbaJUral 
basin according to the AIC and CAT or to the BIC and HQ criteria, respectively. 
The fact that the processes that correspond to the peaked and monotonic spectra 
in Fig. 6 are quite similar is seen from the values of 4(l) and ~ 0 . ~  given in Table 1 
for deseasonalized temperature in both basins. In all cases, the deseasonalized time 
series spectra is indistinguishable from white noise in Fig. 6. 

The deseasonalized time series of actual temperature in the EmbaJUral basin is 
approximated with an AR model 

Tt = 0.21Tt-l + at ,  ( R M S E  of parameter estimate = 0.06) ( 6 )  

with a, = 2.5"C while the best AR model for the simulated series is 

Tt = 0.32Tt-l + iLt, ( R M S E  of parameter estimate = 0.09) (7) 

with &, = 2.7"C. The difference between these two models is statistically insignifi- 
cant. 

For the Great Lakes basin, the models of deseasonalized actual and simulated 
temperature are quite similar. 

I 
Tt = 0.12Tt-l + at ,  ( R M S E  of parameter estzmate = 

Tt = 0.13Tt-l + i t ,  ( R M S E  of parameter estimate = 0.09) (9) 



Table 3. Comparison of actual and simulated climate mean monthly precipitation 

Mean Value RMS p 4(1 )  70.9 
mrn d-' mm d-' % months 

Emba/Ural basin 
R ~ W  data: Actual 0.76 0.41 1 96 1 

GCM 1.40 0.72 12 (1, 7)" 64 (79, 69) 13 (2, 5) 
Deseasonalized: Actual 0.39 1 98 0 

GCM 0.51 1 95 1 

Great Lakes basin 
Raw data: Actual 2.2 0.73 12 (1) 79 (100) 12 (0) 

GCM 3.0 0.95 3 (0, 1) 96 (98) 0 
Deseasonalized: Actual 0.60 99 

(O) 100 
0 

GCM 0.82 0 0 

'Predictability parameters for criteria other than AIC are shown in parentheses 

with ua = 1.6"C and &, = 2.1°C. Note that the models are very close to white 
noise and therefore have almost zero predictability (see Table 1). 

4.2 Precipitation 
The GFDL GCM appears to be rather poor in simulating precipitation in both the 
Emba/Ural basin and the Great Lakes basin and is strongly biased (see Table 3). The 
hypothesis of equal mean values for the actual and simulated precipitation time series 
is rejected for both basins (see Table 2). Yet, according to Table 2, the variances in the 
Great Lakes basin differ insignificantly and the model seems to be able to reproduce 
the shape of the probability distribution functions for both basins. 

Seasonal patterns of precipitation do not appear in these basins and attempts to 
depict average seasonal precipitation behaviour (as in Fig. 4 for air temperature) are 
quite irregular; see Fig. 7. In agreement with the actual data, the cycle is rather 
irregular in the simulated series as well but it has larger amplitude and variance and 
its peaks do not agree with the actual data. The differences in the trend's shape 
and its regularity are large, especially for the Emba/Ural basin. However, it seems 
important to us that the model has revealed capability to differ between processes 
with strong and weak seasonal cycles (air temperature versus precipitation; see Figs. 
4 and 7). 

The irregularity in the seasonal trend in the Emba/Ural basin is revealed clearly 
in the spectrum estimates for precipitation in Fig. 8. The weak seasonal trend in the 
actual Emba/Ural basin precipitation leads to a very flat spectrum, while two out of 
the three spectrum estimates for the simulated data contain shape peaks at f = 1 
cpy (see Fig. 8). 

The actual time series is approximated with the AR(1) model, 

Pt = 0.20Pt-l + at, (RMSE of parameter estimate = 0.06) (10) 

where u: = 0.17 (mm/day)* while the best approximation for the simulated series 
is an AR model of order p = 12, which gives a strong seasonal cycle (maximum 
peak in Fig. 8) and differs significantly from (10). Specifically, the predictability of 
the simulated series is higher than that of the actual precipitation (compare values of 
d,(l) and 7 0 , ~  for the actual and simulated Emba/Ural basin precipitation in Table 
3). Thus, the GCM simulation of precipitation in the Emba/Ural basin should be 
regarded as unsuccessful from this point of view. 
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Figure 7. Average seasonal trend and 90% confidence limits in monthly precipitation on 
the Emba-Ural and the U.S. Great Lakes basins 

Figure 8. Spectra of actual and GCM-simulated monthly precipitation in the Emba-Ural 
and the U.S. Great Lakes basins 

In the Great Lakes basin, on the contrary, the actual seasonal trend is more 
prominent than in the simulated data (see Fig. 8). Although there is a pair of similar 
spectrum estimates for the actual and simulated precipitation in both basins, diagnos- 
tic checking, according to Box and Jenkins (1970), shows that the low-order models 
with flat spectra should be rejected. The predictability properties of the best-fitting 
AR models for the actual and simulated time series of precipitation in the basins are 
dissimilar (see Fig. 9). 

When the seasonal trend is removed, the remaining time series have approxi- 
mately the same properties in each basin. The deseasonalized time series of actual 
precipitation in the Emba/Ural basin is approximated with an AR model. 

Pt = 0.15Pt-1 + a,, (RMSE of parameter estimate = 0.06) (I1) 

with ra = 0.38 mmlday while the best model for the simulated series is 

?t = 0 .20?~-~  + at, (RMSE of parameter estimate = 0.09) (I2) 
with ha = 0.49 mmlday. The difference between these two models is statistically 
insignificant. 

The deseasonalized time series of actual and simulated precipitation in the Great 
Lakes basin are approximated with AR models of order one, which are both very 
close to white noise and have statistically equivalent variance estimates (see Table 
2). Note, however, that the removal of the seasonal trend from the precipitation time 
series is hardly necessary because of its irregularity. 

The available data sets in this comparative study are not sufficient to arrive at re- 
liable general conclusions concerning statistical adequacy or inadequacy of general 
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circulation models. This attempt to compare major statistical properties of the ac- 
tual and simulated climates serves as a starting point for more thorough studies to 
help improve physical models of climate. 

The following conclusions can be drawn concerning statistical adequacy of the 
GFDL general circulation model air temperature and percipitation in the basins of 
the Emba and Ural Rivers, and the U.S. Great Lakes. First, the model gives correct 
estimates of mean monthly air temperature and its variance in the basins both before 
and after seasonal trend is removed and gives acceptable estimates of its probability 
distribution function for the Great Lakes basin. 

The shape of the seasonal cycle of air temperature is reproduced reasonably but 
appears biased positively for both basins in July and August. The model gives less 
persistent time series of air temperature in both basins before the trend is removed 
and about the same t v ~ e  of "almost white noise" deseasonalized time series as the 

.A 

actual temperature. However, the discrepancy is not very prominent, at least for the 
Great Lakes basin. 

The model's adequacy concerning monthly precipitation in these two regions is 
low. It overstimates mean values and variances (the latter is true for the EmbaIUral 
basin but not for the Great Lakes basin) and gives wrong seasonal trends, spectra, and 
predictability parameters. This conclusion agrees with common opinion concerning 
GCM-simulated precipitation. Yet, the model generates time series with approx- 
imately correct shape in their residual CDFs and, in agreement with actual data, 
the simulated precipitation has a much weaker seasonal trend and smaller statistical 
predictability than air temperature. 
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