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Abstract: Microcystis aeruginosa, a planktonic colonial cyanobacterium, was not abundant in the 2-year period before ze-
bra mussel (Dreissena polymorpha) establishment in Saginaw Bay (Lake Huron) but became abundant in three of five
summers subsequent of mussel establishment. Using novel methods, we determined clearance, capture, and assimilation
rates for zebra mussels feeding on natural and laboratoryM. aeruginosastrains offered alone or in combination with other
algae. Results were consistent with the hypothesis that zebra mussels promoted blooms of toxicM. aeruginosain Saginaw
Bay, western Lake Erie, and other lakes through selective rejection in pseudofeces. Mussels exhibited high feeding rates
similar to those seen for a highly desirable food alga (Cryptomonas) with both large (>53mm) and small (<53mm) colo-
nies of a nontoxic and a toxic laboratory strain ofM. aeruginosaknown to cause blockage of feeding in zooplankton.
In experiments with naturally occurring toxicM. aeruginosafrom Saginaw Bay and Lake Erie and a toxic isolate from
Lake Erie, mussels exhibited lowered or normal filtering rates with rejection ofM. aeruginosain pseudofeces. Selective
rejection depended on “unpalatable” toxic strains ofM. aeruginosaoccurring as large colonies that could be rejected
efficiently while small desirable algae were ingested.

Résumé: Mycrocystis aeruginosa, une cyanobactérie qui forme des colonies planctoniques, s’est multipliée dans la
Baie de Saginaw (Lac Huron) durant trois des cinq étés qui ont suivi l’établissement de la Moule zébrée (Dreissena
polymorpha), alors qu’elle n’était pas abondante durant les deux années qui ont précédé cet établissement. Des métho-
des inédites ont permis de déterminer les taux de clearance, de capture et d’assimilation de Moules zébrées alimentées
de souches naturelles et de souches de laboratoire deM. aeruginosa, présentées seules ou en combinaison avec d’autres
algues. Nos résultats s’accordent avec l’hypothèse qui veut que les Moules zébrées favorisent, par des rejets sélectifs
dans leurs pseudofèces, la formation de fleurs d’eau àM. aeruginosade souche toxique dans la baie de Saginaw, dans
la région occidentale du lac Érié et dans d’autres lacs. Nourries de grandes (>53mm) et de petites (<53mm) colonies
d’une souche non-toxique et d’une souche toxique de laboratoire deM. aeruginosa, qui inhibent l’alimentation chez le
zooplancton, les moules maintiennent des taux élevés d’alimentation, semblables à ceux que l’on observe lorsqu’on les
nourrit d’une algue très recherchée (Cryptomonas). Dans des expériences d’alimentation utilisant des souches naturelles
de M. aeruginosatoxiques de la baie de Saginaw et du lac Érié et un isolat toxique du lac Érié, les moules présentent
des taux de filtration réduits ou normaux et rejettentM. aeruginosadans leurs pseudofèces. Ce rejet sélectif dépend de
la présence de grandes colonies de souches toxiques «à goût désagréable» deM. aeruginosaqui peuvent être éliminées
facilement, alors que les petites algues appétissantes sont ingérées.

[Traduit par la Rédaction] Vanderploeg et al. 1221

Introduction

Noxious blooms of colonial cyanobacteria such asMicro-
cystis, Anabaena, and Aphanizomenonare well known
symptoms of eutrophication caused by excessive phosphorus
loading (Smith 1983; Sommer et al. 1986). These blooms,

which were common on Saginaw Bay (Stoermer and Theriot
1985; Bierman et al. 1984) and Lake Erie (Makarewicz
1993) during the 1960s and 1970s, diminished as phospho-
rus controls were instituted during the mid-1970s.

Microcystisand other cyanobacterial blooms may have se-
rious consequences to aquatic ecosystem function and
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health, to aesthetics, and to wildlife and human health.
Microcystisand some other cyanobacteria produce a potent
class of hepatotoxins called microcystins that can poison
aquatic organisms as well as wildlife, domestic animals, and
humans that drink or ingest algae in the water (Carmichael
1996). The major exposure pathway of microcystin is
through ingestion, although some toxins can be released
upon death of the cells (Lampert 1982; Nizan et al. 1986;
Fulton and Paerl 1987). The toxicity and large colonial size
of Microcystis and other nuisance cyanobacteria can lower
ingestion and assimilation rates of zooplankton (Lampert
1982; Nizan et al. 1986). Toxicity, lowered assimilation
rates, and low nutritional quality ofMicrocystis can cause
decreased survival and reproduction of zooplankton, thus
leading to inefficient pelagic food webs (Fulton and Paerl
1987; Vanderploeg et al. 1996).

After zebra mussels (Dreissena polymorpha) became es-
tablished in Saginaw Bay, there were anecdotal reports of
Microcystis aeruginosablooms on Saginaw Bay.Microcystis
blooms were not expected on the bay because of decreased
phosphorus loading. Thus, we wondered if zebra mussels
were somehow causing these blooms. This hypothesis
seemed plausible, asMicrocystis blooms were reported in
other systems where zebra mussels became established. In
September 1995, there was an intense bloom of
M. aeruginosathat was visible from shore and satellite im-
agery as a surface scum that covered much of the western
basin of Lake Erie (Budd et al. 2001). Cyanobacterial
blooms had not been seen on Lake Erie since phosphorus
loading reductions were instituted (Makarewicz 1993;
Nicholls and Hopkins 1993).Microcystisblooms following
zebra mussel invasions have also been reported for Gull
Lake and Gun Lake in Michigan (S. Hamilton, Michigan
State University, East Lansing, Mich., personal communica-
tion) and the Bay of Quinte (Lake Ontario) (K. Nicholls,
Ontario Ministry of the Environment, Toronto, Ont., per-
sonal communication). Additionally, late-summer blooms of
the colonial cyanobacteriumAphanizomenonin Oneida Lake
followed the zebra mussel invasion (Horgan and Mills
1997). An exception to this pattern occurred in the Hudson
River, whereMicrocystisand other cyanobacteria have virtu-
ally disappeared since the establishment of zebra mussels
(Smith et al. 1998).

The potential connection between zebra mussels and
M. aeruginosahas important water quality management im-
plications; it appears that zebra mussels have reversed prog-
ress made by nutrient control programs by increasing the
probability of a cyanobacterial bloom. For example, in
Saginaw Bay (Bierman et al. 1984), Lake Erie (Makarewicz
1993), Gull Lake (Tessier and Lauff 1992), and the Bay of
Quinte (K. Nicholls, Ontario Ministry of the Environment,
Toronto, Ont., personal communication), blooms occurred
after drastic reductions in phosphorus loading and improve-
ments in water quality.

Our preliminary observations involving traditional bottle
experiments and direct observations with video during
September 1994 showed that mussels did not ingest
M. aeruginosabut nearly continually filtered and produced
pseudofeces. This behavior led us to hypothesize that zebra
mussels promoted and maintainedM. aeruginosablooms via
rejection ofMicrocystisas pseudofeces. Fully stated, the hy-

pothesis argued that (i) mussels would continually filter in the
presence ofMicrocystis, (ii ) mussels would ingest all algae
exceptMicrocystis, and (iii ) mussels would produce loosely
consolidated pseudofeces that would be injected back into the
water column. If zebra mussel biomass and weight-specific
filtering rate of the mussels allowed the mussels to clear the
water at a rate representing a significant proportion of algal
growth rate, then selective filtering would lead to
M. aeruginosadominance.

To investigate the selective feeding hypothesis, we initi-
ated a series of experiments ofD. polymorphafeeding on
naturally occurringM. aeruginosafrom Saginaw Bay and
Lake Erie and on pure laboratory cultures ofM. aeruginosa,
including a strain isolated from the Lake Erie bloom of Sep-
tember 1995 (Brittain et al. 2000). In this paper, we examine
how M. aeruginosacolony size, toxicity, and strain type af-
fect mussel feeding behavior. Combining these experimental
results with biomass of zebra mussels in Saginaw Bay and
Lake Erie allowed us to quantify the magnitude of the selec-
tion process. Also, becauseM. aeruginosa blooms on
Saginaw Bay were not documented, we examined time his-
tories of phytoplankton composition before and after the ze-
bra mussel invasion.

Materials and methods

Study sites and collections
Dreissena polymorphaand water from Saginaw Bay were col-

lected from Station 5, a 3.5-m-deep station with a cobble, sand,
and gravel substrate, in the inner bay (Nalepa et al. 1995) as part of
a 6-year study of the impact of zebra mussels on the ecology of the
bay. Temperature, chlorophylla (Chl a), particulate organic carbon
(POC), and algal composition were taken at this station at 1 m
depth during May, September, and October in 1990 and at least
monthly during 1991–1996.Dreissena polymorphaand water from
western Lake Erie were collected during theM. aeruginosabloom
of September 1995 in Hatchery Bay of South Bass Island
(40°40¢01¢¢N, 82°49¢61¢¢W). Generally, both inner Saginaw Bay
(Nalepa et al. 1996) and western Lake Erie (Schertzer et al. 1987)
are isothermal and well mixed. Western Lake Erie has a mean
depth of 7.1 m, and inner Saginaw Bay has a mean depth of 5.1 m.

Dreissena polymorphawere hand collected by divers using
SCUBA. Rocks with attached clusters ofD. polymorpha were
wrapped in moist paper towels and placed in coolers for transport.
Mussels and water were kept cool and transported on the day of
collection to the Great Lakes Environmental Research Laboratory
(GLERL) and then kept at ambient temperature and photoperiod.

Reacclimation of mussels to natural seston containing
Microcystis

A reacclimation period was provided to allow mussels to rees-
tablish natural feeding behaviors for the ambient lake seston.
Typically, mussels were collected in the late morning and used in
experiments after ~17 h of reacclimation to lake seston at the am-
bient lake temperature. Upon arrival at GLERL within 4–5 h of
collection, mussels typically ranging in length between 13 and
16 mm were gently removed from the rocks to which they were
attached by cutting their byssal threads with a razorblade, and
periphyton adhering to the shells was gently brushed off. Twenty to
30 of these mussels were placed in a 30-L aquarium filled with
lake water collected that day. After ~14 h, all mussels were placed
in another 30-L aquarium filled with new lake water for 3 h before
being used in the feeding experiments.
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Chlorophyll, temperature, POC, and ash-free dry weight
For the time histories of temperature and triplicate measure-

ments of Chla and POC, methods of Nalepa et al. (1996) were
used. For Chla determinations for feeding experiments, the se-
quential filtration apparatus (Bowers 1980) fitted with a GF/F filter
downstream of a 53-mm-mesh Nitex filter (cut from Nitex screen)
was used to collect >53 and <53mm size fractions. These filters
were extracted inN,N-dimethylformamide and analyzed fluoro-
metrically (Speziale et al. 1984). Precision (SE/X) for all replicate
Chl a analyses for monitoring and experiments was better than 5%.

Ash-free dry weights (AFDW) of mussels were determined by
removing mussels from shells, drying for 2 days at 60°C, and
ashing at 550°C for 1 h. In some experiments, AFDW was deter-
mined from length–AFDW regressions of mussels collected at the
same station and time.

Algal culturing and phytoplankton analysis
Algae were harvested in exponential phase, except for

M. aeruginosastrain CCAP 1450/11(described below), which was
harvested in the early stationary phase of growth. The appropriate
quantity of algal suspension was diluted into ambient seston or 0.2-
mm-filtered lake water as required for the experiment. All culture
media were filter sterilized with a 0.2-mm membrane filter.
Cryptophytes were grown in WC media (Vanderploeg et al. 1996)
modified by doubling NaHCO3, halving NaNO3, and adding
0.1 mM NH4Cl at a light intensity of 40mmol quanta·m–2·s–1 on
16 h light : 8 h dark cycle at 20°C. AllM. aeruginosastrains were
cultured in BG-110 + NaNO3 (2 mM) + NaHCO3 (10 mM) me-
dium (Rippka and Herdman 1992) plus the WC vitamin mixture
under continuous light at 40mmol quanta·m–2·s–1 at 25°C.

Lake water samples for phytoplankton enumeration were pre-
served in 1% Lugol’s solution, and 2- to 50-mL subsamples
(depending on algal concentration) were filtered onto membrane
filters for permanent mounting on slides; cell dimensions of the
different taxa were converted to cell carbon for reporting biomass
(Fahnenstiel et al. 1998). Some experimenters working with labo-
ratory cultures reported algal concentrations in units of cells per
litre. For comparison with our laboratory results, we converted
them into volumetric units of cubic millimetres per litre from re-
ported cell dimensions.

Toxin concentration
Microcystin, the toxin produced byMicrocystis, was measured

by enzyme-linked immunosorbent assay (ELISA) of polyclonal an-
tibodies to microcystin-LR (An and Carmichael 1994). Seston or
algal cultures were filtered onto GF/F filters and extracted in meth-
anol. Typically, 1–2 L of seston and 25–50 mL ofMicrocystiscul-
ture were filtered, and triplicate ELISAs were run with a precision
(SE/X) of ~10%. Microcystin concentration was normalized to
Chl a concentration and dry weight of the seston orMicrocystis
culture. To estimate microcystin concentration per unit ofMicro-
cystisChl a in seston, we assumed that the proportion ofMicrocystis
Chl a in the seston was the same as that for algal carbon estimated
from algal counts.

General design of filtering experiments
To obtain estimates of filtering rates and other feeding rate vari-

ables on natural seston and algal cultures, we developed a novel
experimental approach based on methods of Walz (1978) and
Vanderploeg et al. (1995). Experiments were usually conducted in
2-L beakers in dim light (4–8mmol quanta·m–2·s–1). Gentle bub-
bling provided agitation to assure mixing in four experimental
(with mussels) and three control (without mussels) beakers and to
keep particles suspended during the 1.5- to 3-h experiments.
Usually, four mussels were placed in each experimental beaker.
Enough phosphorus and nitrogen were added to the beakers to sat-

urate nutrient uptake by the algae and to prevent different algal
growth rates from occurring in the control versus experimental
beakers as a result of mussel nutrient excretion; final concentra-
tions were 12.5 and 250mM phosphate and nitrate, respectively, or
2.5, 25, and 25mM phosphate, nitrate, and ammonium.

We measured changes in Chla concentration in small (<53mm)
and large (>53mm) size fractions to examine the mussels’ response
to naturally occurringM. aeruginosa, which occurred as colonies
in the larger size fraction. Measuring Chla concentrations in the
water column and on the entire beaker contents after resuspending
all settled material at the end of the experiment allowed us to do a
mass balance of mussel-induced changes to distinguish between
what Chl a was filtered and what was assimilated. Typically, two
200-mL samples were taken by wide-bore volumetric pipette from
the water column and from the mixed beaker contents for Chla
analyses.

Filtering (clearance) rate (F) for particle removal in each experi-
mental container was calculated by (Vanderploeg et al. 1995)

(1) F = (V/nt)ln(Cwc/Zwc)

whereCwc is the mean Chla concentration in the water column at
the end of the experiment in control containers,Zwc is the Chla
concentration in the water column of an experimental container at
the end of the experiment,V is the volume of water in the con-
tainer during the experiment,n is the number of mussels, andt is
the duration of the experiment.

We calculated this filtering rate for both chlorophyll size frac-
tions and used the filtering rate on the preferred size fraction
(Fpref), i.e., the size fraction having the highest filtering rate, to es-
timate pumping rate (Vanderploeg et al. 1995). TheFpref would
closely approximate pumping rate if particles in the preferred size
fraction were efficiently filtered and if feces and pseudofeces pro-
duction added back to the water column in this size category was
low (Vanderploeg et al. 1995).

The product of pumping rate and “average” concentration of Chla
in the water column (Cwc) gave Chla removed, i.e., the capture
rate (CR)

(2) CR = FprefCwc

Cwc was calculated with the formula given by Frost (1972):

(3) Cwc = (Zwc – C0)/(ln Zwc – ln C0)

where C0 is the mean initial concentration of chlorophyll in all
containers.

To calculate assimilation rate and the corresponding clearance
rate for assimilated material, we used the following approach.
Using equations analogous to eqs. 1 and 3, a filtering rate (FT) for
total Chl a in the beakers (after mixing beaker) and “average” con-
centration of Chla (CT) in each experimental beaker were calcu-
lated. Analogous to eq. 2, we calculated assimilation rate (A) as

(4) A = FTCT.

Using A given by eq. 4 and the basic definition of clearance rate
(eq. 2), the filtering rate for Chla assimilated was calculated from
the Chl a available in the water column by

(5) FA = A/Cwc.

All filtering rates were normalized to AFDW of the mussels
used in the experiments as well as to gill surface area calculated
from the gill area to mussel length relationship given by Lei et al.
(1996). This latter normalization, which was used throughout this
paper, was chosen to provide filtering estimates that were inde-
pendent of mussel size (Kryger and Riisgård 1988; Lei et al. 1996)
and condition (weight for a given length), which can change with
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site, reproductive status, and season (Nalepa et al. 1993; H.A.
Vanderploeg, unpublished data).

To calculateA or CR as a percentage of mussel body carbon, we
converted Chla feeding rate to carbon feeding rate by multiplying
Chl a feeding rate by the ratio of seston particulate carbon (POC)
to Chl a concentration. AFDW of mussels was converted to carbon
content by multiplying AFDW by 0.524 (Nalepa et al. 1993).

All feeding rate variables were calculated for each size fraction
and for the total of both size fractions. The size fraction referred to
was put in parentheses next to the variable, and when no reference
to a size fraction is presented, it refers to the variable calculated
from the sum of chlorophyll in both size fractions. Note thatA, by
definition, equalsA(<53) + A(>53), butFA does not usually equal
FA(<53) + FA(>53). The relativeFA values of the two size frac-
tions provide estimates of selectivities for the total filtering–
ingestion–assimilation process for algae in the two size-classes
(Vanderploeg 1994). Unless there is significant survival of algae
during gut passage, relativeFA values closely approximate
selectivities for ingestion. All feeding rate variables were tested to
see if they were significantly different (P < 0.05) from zero using a
two-tailed t test.

Design for experiments with Microcystis in natural
seston

The goal of the experiments with natural seston that contained
M. aeruginosawas to determine feeding rate variables on natural
M. aeruginosacolonies in contrast with other seston. Two experi-
ments were conducted using unmodified seston: Saginaw Bay (SB)
seston (11 July 1995) and Lake Erie (LE) seston (21 September
1995) (Table 1). Other experiments addedRhodomonas minutaor
Cryptomonas ozolini, small (5 mm and 8 mm) highly digestible
cryptophytes of high food quality (Vanderploeg et al. 1996), to un-
modified seston or to >53, 53–153mm, or >153mm size fractions of
seston dominated byM. aeruginosa(Table 1). Experiments involv-
ing cryptophyte addition were designed to show filtration and re-
jection abilities of the mussels when offered a small desirable alga
in the presence of naturally occurringMicrocystis.

In the experiment “SB seston > 53mm + Rhodomonas,” we
gently concentrated natural seston on a 53-mm screen and added it
andRhodomonasto 0.2-mm-filtered lake water to produce the chlo-
rophyll size distribution in Table 1. In the experiment “LE seston +
Rhodomonas,” Rhodomonaswas added to LE seston to enrich the
<53mm size fraction final concentration of ~4mg Chl a·L–1. Both
of these enrichment experiments were performed 1 day following
experiments with the natural seston, and mussels were kept in nat-
ural seston before they were added, without acclimation, to the
cryptophyte-amended suspensions.

The experiments performed with SB seston +Cryptomonason
15 August 1997 were sequentially performed with the same mus-
sels previously acclimated to natural seston for ~1 day (Table 1).
The first experiment used seston concentrated on a 153-mm screen
added to 0.2-mm-filtered lake water enriched withCryptomonas. In
the second experiment, we added seston in the size range 53–
153mm by collecting seston on a 53-mm screen that had first been
filtered through a 153-mm screen to see if mussels would better ingest
“smaller” than “larger” Microcystis colonies (Table 1). The mus-
sels were acclimated for 1 h with the experimental mixture of
seston andCryptomonasprior to each experiment.

Design of experiments with laboratory cultures of
Microcystis

Experiments with three different laboratory strains of
M. aeruginosawere performed to evaluate effect of strain, micro-
cystin concentration, and colony size on mussel feeding and behav-
ior. We selected strains having different microcystin concentration
(Table 2) that maintained some degree of colony formation in cul-

ture to allow examination of mussel feeding on large versus small
colonies or individual cells. CCAP 1450/11 contained no micro-
cystin (Table 2). We chose PCC 7820 because it is known to be
toxic and severely depress feeding and survival inDaphnia magna
(Nizan et al. 1986). LE-3, the most toxic strain in this study (Ta-
ble 2), was isolated from theM. aeruginosabloom on Lake Erie in
September 1995 (Brittain et al. 2000). The work with the LE-3
strain and other strains was particularly important for examining
feeding onMicrocystis colonies in the <53mm fraction because
colonies in this size category were not available in natural seston.

Acclimation to these experimental mixtures of laboratory cul-
tures was similar to the reacclimation procedure described for
natural seston; however, acclimation periods varied according to
experiment (Table 2).Dreissena polymorphaused in these experi-
ments were maintained in the laboratory on Algae Diet C (pre-
servedThalassiosira, Skelatonema, Isochrysis, and Chaetoceros)
(Coast Seafoods Co., South Bend, Wash.) supplemented with
C. ozolini in large well-mixed and aerated aquaria (Vanderploeg et
al. 1996).

Experiments 1 and 2 looked at feeding rate variables for a single
strain of M. aeruginosa (Table 2). Experiment 1 with CCAP
1450/11, in addition to examining the effect of a particular strain
type, examined the response of mussels to a high concentration of
Microcystis, as found during a bloom (Table 2). Experiment 2, as
well as Experiments 3 and 4, used much lower algal concentrations
as might occur before a bloom to determine selectivity processes
leading to bloom formation.

The multitreatment Experiments 3 and 4 each used the same set of
mussels with three different algal treatments (Table 2). Experiment 3
evaluated the mussel response to different-sized colonies of the LE-3
strain ofM. aeruginosa. Treatment 3A explored the mussels’ response
to the LE-3 strain presented as small colonies (<53mm size fraction)
produced by screening the suspension through a 53-mm screen. Treat-
ment 3B examined the effects of a more even distribution of colony
sizes. Treatment 3C withCryptomonaswas a control to show the ef-
fects of a highly desirable alga.

Experiment 4 examined the response of mussels to mixture of
small colonies of the LE-3 strain ofM. aeruginosaand Crypto-
monas. Treatment 4A withCryptomonaswas used to establish a
baseline of effects of high-quality food alone. Experiment 4B was
done to establish what the effects of small colonies (mean cells per
colony = 4.3) ofM. aeruginosastrain LE-3 offered alone. These
colonies were prepared by pouring the culture through a 37-mm
screen. Treatment 4C examined the effects of 50:50 mixture (based
on cell volume concentration measured with a Coulter counter
(Vanderploeg et al. 1995)) of small colonies of LE-3
M. aeruginosaand Cryptomonason mussel feeding.

Results

Chlorophyll, phytoplankton composition, and
microcystin in Saginaw Bay

Zebra mussels started significantly recruiting to Saginaw
Bay during the late summer and fall of 1991 (Nalepa et al.
1995). Monitoring results for 1992–1996 revealed that in ev-
ery year except 1993, there was a dramatic clear-water phase
in spring followed by relatively high Chla concentration
during the summer (Fig. 1). In 1993, the clear-water phase
lasted throughout the summer.

In 1990, before the zebra mussels invaded the bay, the
cyanobacteriumOscillatoria comprised 35–40% of phyto-
plankton biomass during May and September, but it or other
cyanobacteria were not found in October. In 1991, cyano-
bacteria were rare (0–10% of the biomass) andMicrocystis
was not found. In contrast,M. aeruginosawas an important
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Size fraction
(mm)

Cwc

(mg·L–1)
Microcystis
biomass (%)

Microcystin concentration in
Microcystis (mg×mg Chl a–1)

Microcystiscolony size
(cells·colony–1)

Experiment Date Mean Range

SB seston 11 July 1995 <53 4.4
>53 19.3 82
Total 23.7 67 0.25 2 130 300 – 10 000

SB seston > 53mm + Rhodmonas 12 July 1995 <53 6.1
>53 17.1 82 0.25 2 130 300 – 10 000
Total 23.2

LE seston 21 Sept. 1995 <53 1.3
>53 36.6
Total 37.9 76 3 230 800 – 10 000

LE seston +Rhodmonas 22 Sept. 1995 <53 3.5
>53 16.6
Total 20.1 76 3 230 800 – 10 000

SB seston > 153mm + Cryptomonas 15 Aug. 1997 <53 2.8
>53 1.9 99 0.30 1 320 200 – 4 500
Total 4.9

SB seston 53–153mm + Cryptomonas 15 Aug. 1997 <53 3.2
>53 1.7 82 0.30 207 20 – 700
Total 4.9

Note: C wc is the average Chla concentration available to the mussels during the experiment; SE/X was in all cases <5%. All experiments were run at 20–21°C.

Table 1. Experimental conditions for zebra mussels feeding on naturally occurringMicrocystis in seston from Saginaw Bay (SB) and Lake Erie (LE) on mixtures with
R. minutaand C. ozolini.
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component (>40% of biomass on at least one date) of the al-
gal community during 1992, 1994, and 1995 and tended to
dominate during summer and early fall (Fig. 2). During
blooms in Saginaw Bay and Lake Erie, the colonies were
quite large, having 300 – 10 000 cells·colony–1 (Table 1).
During nonbloom periods, colonies were smaller (Tables 1
and 3); however, in all cases,M. aeruginosawas primarily
found in the >53mm size fraction. At all times sampled (Ta-
bles 1 and 3),M. aeruginosawas toxic, and during experi-

ments, microcystin concentration was about the same (Ta-
ble 1). Although the microcystin concentration in the Lake
Erie bloom was not measured, the isolate from the bloom
had a high concentration of microcystin (Table 2). In Sep-
tember 1992, other gelatinous colony-forming cyanophytes,
AgmenellumandSynechococcus, combined withMicrocystis
to account for 80% of the algal community.

Experiments with natural seston
The mussels in all experiments except the SB experiment

(with unmodified seston) exhibited high values ofF(<53)
that were significantly different from zero (Fig. 3a). A simi-
lar pattern was seen forFA(<53), except thatFA(<53) was
appreciably lower thanF(<53) in the LE experiment. In con-
trast,F(>53) was low andFA (>53) was very low (Fig. 3) in
all experiments. Only in the case of the experiment “SB
seston 53–153mm + Cryptomonas” were both F(>53) and
FA(>53) significantly different from zero. SinceM. aeruginosa
dominated the >53mm fraction (Table 1), this implied that
the response to the >53mm fraction represented the response
to Microcystis. That F(>53) was much less thanF(<53) im-
plied that an appreciable portion of CR not assimilated was
returned to the water column under the mixing regime of
this experiment. The low or zero values ofFA(>53) (relative
to high values ofFA(<53)) imply very low or zero selectivity
for the M. aeruginosacolonies.

The high values ofF(<53) (= pumping rate) and the very
high concentrations of Chla in the >53mm fraction in the
“SB seston > 53mm + Rhodomonas,” “LE seston,” and “LE
seston +Rhodomonas” experiments (Table 1) led to very high
CRs (CR = 200–380% C·day–1, Fig. 3c), most of which was
not assimilated (Fig. 3d) but, as shown by video observations,
was expelled in the form of pseudofeces primarily composed
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Strain or mixture and comments Experiment
Acclimation
period (h)

Temperature
(°C)

Microcystin
concentration
(m mg g× Chl a–1)

Size fraction
(mm)

Cwc

(mg×L–1)

CCAP 1450/11a 1 4 25 0 <53 10.8
>53 1.0
Total 11.8

PCC 7820b 2 70 17 0.22 <53 3.9
>53 0.5
Total 4.4

LE-3c (<53mm) 3A 18 20 0.66 Totale 5.6
LE-3c 3B 2 20 0.66 <53 0.8

>53 0.7
Total 1.5

Cryptomonas 3C 1 20 0 Totale 7.8
Cryptomonas 4A 18 20 0 Totale 3.0
LE-3c (<53mm) 4B 18 20 0.66 Totale 3.8
50:50 mixture of LE-3 (<53mm)

and Cryptomonas
4C 19 20 0.66d Totale 4.2

Note: Experiments with same number but different letter designations were run with the same mussels on the same or consecutive days in the indicated
order. LE-3 (<53) refers to the LE-3 strain that was poured through a screen to produce colonies <53mm; C wc is the average Chla concentration
available to the mussels during the experiment; SE/X was in all cases <5%.

aCulture Collection of Algae and Protozoa, Ambleside, U.K.
bPasteur Culture Collection, Paris, France.
cLake Erie isolate of Wayne Carmichael (Brittain et al. 2000).
dMicrocystin concentration inMicrocystis fraction.
eCryptomonasor LE-3 Microcystis fell within the <53mm size fraction.

Table 2. Experimental conditions for zebra mussels grazing on differentM. aeruginosastrains andC. ozolini offered alone or together.

Fig. 1. Seasonal chlorophyll concentrations at Station 5 in
Saginaw Bay during years before and after zebra mussels in-
vaded Saginaw Bay. Data are means that have a precision
(SE/X) of better than 5%.
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of Microcystis colonies (H.A. Vanderploeg, unpublished
data). These pseudofeces were very unconsolidated, a mass of
loosely aggregated colonies that tended to break down into
their constituent colonies as they were expelled from the
incurrent siphon (H.A. Vanderploeg, unpublished data).

Large and significant values ofA were in all cases due to
the large contribution ofA(<53). BecauseA is the product of
filtering rate and Chla concentration (eq. 5), the large but
not significant values ofA(> 53) andA for the LE experi-
ment were due to the product of low but variableFA(>53)
values (Fig. 3b) and very large Chla concentrations in the
>53mm size fraction (Table 1).

Experiments with laboratory cultures
Mussels exhibited high values ofF, FA, andA when feed-

ing on the toxic (Table 2) PCC 7820 strain ofM. aeruginosa
(Experiment 2, Fig. 4). TheF(<53), F(>53), FA(<53),
FA(>53), andA of PCC 7820 were all equal to or greater than
the respective values of forCryptomonasin the other experi-
ments (Fig. 4). Thus, the mussels treated this toxic strain as a
preferred food, and selectivity (FA) for large colonies
(>53mm) was nearly as high as for small colonies (<53mm).

The F and FA of the nontoxic CCAP 1450/11 strain (Ta-
ble 2) were considerably lower than the respective values for
PCC 7820 (Fig. 4). BothF(>53) andFA(>53) of the CCAP
1450/11 strain were negative, andF(<53) andFA(<53) were
considerably lower than the respective values for PCC 7820
or Cryptomonas; however,A was about the same. Much of
the material filtered was ingested because both CR andA
had similar values. In Experiment 3,F, FA, andA were low
or not significantly different from zero for the LE-3 strain of
Microcystis, whether presented as colonies <53mm (Treat-
ment 3A) or distributed between size-classes (Treatment 3B)
(Fig. 4; Table 2). In contrast, after only 1 h of acclimation,F,
FA, and A were high for Cryptomonas(Treatment 3C,
Fig. 4). In Experiment 4,F, FA, andA were high forCrypto-
monas, not significantly different from zero for the LE-3
strain of Microcystis, and low for the mixture of the LE-3
strain of Microcystisplus Cryptomonas(Fig. 4).

Discussion

Strain- and size-specific response
Mussel response toM. aeruginosawas strain specific. The

toxic PCC 7820 and nontoxic CCAP 1450/11 strains were
readily filtered (FA) or assimilated (A) at rates comparable
with those ofCryptomonas, a highly desirable food. It seems
probable that lowF(<53) andFA(<53) values for the CCAP
1450/11 strain ofM. aeruginosaresulted from the Chla
concentration in this experiment being above the incipient
limiting concentration (ILC). Sprung and Rose (1988) found
that the ILC for zebra mussels feeding onChlamydomonas
expressed in algal volume units was ~2 mm3·L–1; average
concentration of CCAP 1450/11 was equivalent to
7.2 mm3·L–1. It is also possible that there was some inhibi-
tion of filtering rate due to this culture being in early station-
ary phase rather than exponential phase as were all other
cultures. The negative values ofF(>53) andFA(>53) proba-
bly do not indicate a lack of ingestion of colonies in the
>53 mm fraction. Instead, this is probably a typical case of
the particle-production problem that arises when high food
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Fig. 2. Seasonal phytoplankton composition expressed as relative
carbon biomass at Station 5 in Saginaw Bay during years of
Microcystisdominance.
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concentration in one size category is transformed into parti-
cles in another size category having few particles to begin
with (Vanderploeg et al. 1984). Here, concentration of Chla
in the >53mm fraction was very low, and high pseudofeces
production resulting from high CR(<53) added much Chla
to the >53mm fraction.

The FA values for Cryptomonasand PCC 7820 (90–
100 mL·cm–2·h–1) correspond closely to the high filtering
rate (84–114 mL·cm–2·h–1) reported by Kryger and Riisgård
(1988) forChlorella at 20°C under “ideal” laboratory condi-
tions. Assimilation rates of 30–40% C·day–1 observed in our
experiments forCryptomonasand the PCC 7820 and CCAP

1450/11 strains ofM. aeruginosawere considerably higher
than the maximum of 4.5% C·day–1 reported by Walz (1978)
for the pennate diatomNitzschia. The experiment with the
PCC 7820 strain showed that both large and small size frac-
tions of M. aeruginosawere ingested (and assimilated).

In contrast,FA and A of the small colonies of the LE-3
strain and large colonies ofM. aeruginosaof Saginaw Bay
or Lake Erie seston were low or zero. Since the LE-3 strain
was isolated from the Lake Erie bloom, we can argue that
Lake ErieM. aeruginosaof all sizes were unpalatable to the
mussels. TheFA andA of M. aeruginosafrom Saginaw Bay
were low, whether presented as that found in natural seston
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Microcystiscolony size (cells·colony–1) Microcystin concentration

Date Mean Range Water (mg×L–1) Microcystis (mg×mg Chl a–1)

20 June 1995 691 100–1000 0.10 0.14
11 July 1995 2130 300 – 10 000 3.5 0.25
15 Aug. 1995 71 50–100 0.10 0.20

Note: Values for water are totals for the particulate phase.

Table 3. Colony size and microcystin concentration ofM. aeruginosaat Station 5 in Saginaw Bay.

Fig. 3. Effect of naturally occurringM. aeruginosaon (a) filtering rates (F), (b) filtering rates for assimilated chlorophyll (FA),
(c) capture rates (CR), and (d) assimilation rates (A) in experiments (Table 1) with seston from Saginaw Bay (SB), Lake Erie (LE),
and mixtures of seston and laboratory cultures ofRhodomonas(Rhod) andCryptomonas(Crypt). In all cases,M. aeruginosadomi-
nated the >53mm size fraction. For each experiment, results are shown from left to right for <53mm (open bars), >53mm (hatched
bars), and the total (shaded bars) size fractions. Means and standard errors for the four replicate experimental beakers are shown, and
asterisks indicate values significantly different (P < 0.05) from zero.
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or that in the restricted size ranges of 53–153 and >153mm.
Experiments with other large colony-forming algal species
and microzooplankton indicated that colonies in the size
range of 53–153mm, although not filtered at maximal rates,
would not present a great impediment to feeding (e.g.,
MacIsaac et al. 1991; Horgan and Mills 1997; Bastviken et
al. 1998). Ten Winkel and Davids (1982) noted that algae as
large as 750mmcould be ingested. Thus, although it is possi-
ble that very large colonies may be impossible forDreissena
to ingest, chemical quality or toxicity was important to the
mussels’ response. Poor chemical quality was suggested as
the reason for the much lower selectivity for 25-mm-diameter
colonies of the cyanobacteriumChroococcusrelative to al-
gae of the same size (Ten Winkel and Davids 1982).

Experiments of Lavrentyev et al. (1995), Bastviken et al.
(1998), and Baker et al. (1998) are consistent with our con-

clusions of the importance ofM. aeruginosastrain type on
mussel response. Lavrentyev et al. (1995) observed zero net
clearance rates onMicrocystisin screened (40 and 53mm) and
unscreened Saginaw Bay seston in September and October
1994, when 40% of the algal biomass wasMicrocystis.
Bastviken et al. (1998) showed that “net” clearance rate (~FA)
of natural colonialMicrocystis(with greatest linear dimension
of 49 mm) in Hudson River seston was about 25% of that of
the preferred foods, which were ambient cryptophytes and
unicellular culturedM. aeruginosa(Carolina Biological Sup-
ply) added to the seston.

In contrast, Baker et al. (1998) reported that unicells of
the nontoxic UTEX 2386 and toxic UTEX 2385 strains of
M. aeruginosawere cleared at a rate greater than green al-
gae and diatoms. Clearance rates calculated for their 20-mm
mussels for the nontoxic strain were ~45 ± 2 mL·cm–2·h–1 at
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Fig. 4. (a) Filtering rates (F), (b) filtering rates for assimilated chlorophyll (FA), (c) capture rates (CR), and (d) assimilation rates (A)
in four experiments (Table 2) with individual strains ofM. aeruginosain comparison withC. ozolini (Crypt) and in mixture to evalu-
ate the effects ofM. aeruginosastrain type and size.Microcystis aeruginosastrain types: CCAP, Culture Collection of Algae and Pro-
tozoa (Ambleside, U.K.) strain 1450/11; PCC, Pasteur Culture Collection (Paris, France) strain 7820; LE, LE-3 strain. The experiment
numbers referred to in Table 2 are shown on the abscissa, and the uppercase letters refer to treatments within an experimental series
with the same mussels. Means and standard errors for the four replicate experimental beakers are shown, and asterisks indicate values
significantly different (P < 0.05) from zero. In experiments labeled CCAP (Experiment 1), PCC (Experiment 2), and LE (Treatment
3B), a broad size range of colonies (Table 2) was presented and results are given for <53mm (open bars), >53mm (hatched bars), and
the total (shaded bars) size fractions. In experiments with small-sized colonies of LE-3M. aeruginosa(labeled LE <53),C. ozolini
(Crypt), or mixtures of Crypt and LE <53, all cells or colonies appeared in the <53mm fraction and are presented as “total” results
(shaded bars).
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16°C, which falls between the values reported for PCC 7820
and CCAP 1450/11. Respective concentrations of algae ex-
pressed on a volumetric basis were 3.4, 2.3, and 7.2 mm3·L–1,
where the first value refers to initial concentration and the
other two are average concentrations from Table 2. Based on
the expected lowered filtering rate due to an ILC of
~2 mm3·L–1 (Sprung and Rose 1988), these results represent
feeding rates on desirable foods.

The low clearance rates that Baker et al. (1998) observed
on green algae and diatoms were probably a result of their be-
ing above the ILC; the diatoms and green algae were much
larger thanMicrocystisand all algae were presented at a high
initial concentration (105 cells·mL–1). In the case of the
diatom Cyclotella, the initial concentration of 105 cells·mL–1

corresponds to 52 mm3·L–1.

Role of microcystin
Microcystin concentrations inM. aeruginosa from

Saginaw Bay were midrange (0.14–0.30mg·mg Chl a–1) of
values reported forM. aeruginosa in German Lakes
(Sivonen and Jones 1999). The 11 July 1995 microcystin
concentration of 3.5mg·L–1 in Saginaw Bay was the highest
concentration found in the particulate phase in our study of
Saginaw Bay. Much higher concentrations (10–100mg·L–1)
have been found in more eutrophic systems with higher
Microcystisconcentrations (Sivonen and Jones 1999). If the
microcystin content of the LE-3 strain were representative of
M. aeruginosain Lake Erie from which it was isolated, the
toxin concentration found in Lake ErieMicrocystis in Sep-
tember 1995 would have been estimated at 24mg·L–1 and
would have fallen within the high end of the range reported
for lakes (Sivonen and Jones 1999).

The high values ofFA andA for PCC 7820 were surpris-
ing given its well known tendency to “block” ingestion in
Daphnia and cause rapid mortality from the small amount
ingested (Nizan et al. 1986). PCC 7820 is also known to be
toxic in mouse bioassays, and its extracts are toxic to cope-
pods, which normally reject it and thus avoid ingestion
(DeMott and Moxter 1991). The toxic strain used by Baker
et al. (1998) was less potent than PCC 7820 in that ingestion
was not as much suppressed inDaphnia and survival was
high (Nizan et al. 1986). It would be tempting to explain
Dreissena’s low FA and A on the LE-3 isolate from Lake
Erie to be a result of its high microcystin concentrations rel-
ative to other strains. However, it has been argued that toxic-
ity of Microcystisto zooplankton may not be actually caused
by microcystin but another secondary compound termed
Daphnia-toxic compound (DTC) (Jungmann and Benndorf
1994). In addition, the rejectedM. aeruginosafrom Saginaw
Bay had a microcystin concentration about the same as that
for PCC 7820.

Perhaps the low values ofF(<53) and FA(<53) of the
mussels in Saginaw Bay seston represented a chronic effect
of a long-term exposure to a high concentration of toxic
Microcystis. Toxic Microcystishad dominated the algal com-
munity at Station 5 in Saginaw Bay for 3 weeks before this
experiment. Video observations showed that in this experi-
ment, the mussels were actively filtering only 54% if the
time whereas in all other experiments, including the one
with Saginaw Bay seston enriched withRhodomonas, were

filtering 93–97% of the time (H.A. Vanderploeg, unpub-
lished data).

Sorting abilities of mussels
The depression of feeding rate seen in the mixture of LE-3

MicrocystisandCryptomonas(Experiment 4) probably indi-
cates an inability to sort out smallMicrocystiscolonies from
Cryptomonas. The depression in filtering rate was also seen
in mussel feeding activity (H.A. Vanderploeg, unpublished
observations). Mussels exposed toCryptomonasalone were
actively filtering 92% of the time whereas they were filtering
only 41–52% of the time when given small LE-3Microcystis
colonies or the LE-3Microcystis + Cryptomonasmixture,
and few pseudofeces were produced (H.A. Vanderploeg,
unpublished data).

Mussels do have the ability to sort out different particles
and even different algal species. Ward et al. (1998) showed
that the marine musselMytilus can sort out detritus of
Spartina (3–20mm) from similarly sizedRhodomonas(6–
13mm) and enrich the pseudofeces with a higher concentra-
tion of Spartinarelative toRhodomonas. Baker et al. (1998)
showed that when various high concentration mixtures of
large green algae and diatoms were presented to mussels
with small unicells of nontoxicM. aeruginosa, the pseudo-
feces were enriched with the large algae relative toMicro-
cystis. Furthermore, as noted above, zebra mussels had a
lower selectivity for 25-mm-diameterChroococcusrelative to
other algae of the same size (Ten Winkel and Davids 1982).
However, no one has shown that small (4–6mm) algal spe-
cies of nearly the same size can be sorted. The depression in
feeding rate in mussels was similar to that in filter-feeding
cladocerans whenMicrocystiswas paired with similar-sized
desirable green algae (Lampert 1982; Fulton and Paerl
1987). It is unknown how much of the small colonies of
Microcystis, relative to other food, is required to cause a sig-
nificant drop in mussel feeding.

Ecosystem implications

Did zebra mussel grazing promote toxicMicrocystis
dominance?

We do not have extensive series of algal community struc-
ture and toxin concentration for either Saginaw Bay or Lake
Erie that cover a long period before and after the zebra mus-
sel invasions; however, some information is available. In
1990 and 1991, before zebra mussel dominance in Saginaw
Bay, Microcystiswas not abundant.Microcystis aeruginosa
dominated the algal community of Saginaw Bay during
1992, during brief periods during 1994, and for much of the
summer during 1995. In all times sampled in 1995,
M. aeruginosacontained microcystin.Synechococcuswas
also present in September 1992 and it, in addition to
M. aeruginosa, could have been toxic because it is a known
microcystin producer (Domingos et al. 1999). Furthermore,
it is possible that our estimates ofMicrocystis abundance
may be underestimated. Lavrentyev et al. (1995) reported
that Microcystisdominated 40% of the algal community in
September and October 1994, and our 30-cm-diameter 64-
mm-mesh plankton nets were clogged with largeMicrocystis
colonies that may not have been adequately sampled by the
2–50 mL subsampled for making phytoplankton slides.
Thus, Microcystis was not a dominant part of the phyto-
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plankton community 2 years before the invasion and was an
important part three out five summers following the zebra
mussel invasion.

In Lake Erie, cyanobacteria were a minor component of
the phytoplankton before (1985–1987) and during the early
expansion of the zebra mussel population (1988–1990)
(Nicholls and Hopkins 1993). NoMicrocystisbloom of the
magnitude of that occurring during September 1995 had oc-
curred in the few years before or after this bloom. Such a
bloom would have been obvious from shore or satellite im-
agery. These data from both Saginaw Bay and Lake Erie are
consistent with mussels increasing the probability of a
bloom, butMicrocystisblooms are not a certainty.

Whether or not zebra mussels were responsible forMicro-
cystisbloom promotion, they were not capable of controlling
Microcystis concentrations. Marine mussels have been de-
scribed as ecosystem stabilizers and eutrophication control-
lers (Herman and Scholten 1990) through their control of
phytoplankton concentration by grazing. This control of
phytoplankton concentration and resultant water clarity is
often mentioned as ecosystem impacts of zebra mussels
(e.g., Fahnenstiel et al. 1995; Caraco et al. 1997; Smith et al.
1998). Microcystis dominance in Saginaw Bay and Lake
Erie and high summer chlorophyll concentrations in
Saginaw Bay serve as a cautionary tale for the ideas of eco-
system stabilization or eutrophication control.

We estimated the potential collective impact of zebra mus-
sels on mortality rate of desirable algae by calculating the
fraction of water cleared (= mortality rate coefficient) by the
mussels per day in the inner bay region of Saginaw Bay
using biomass of mussels and weight-specific filtering rates
given by Fanslow et al. (1995). Using a range of realistic up-
per and lower values of weight-specific filtering rates from
Fanslow et al. (1995) resulted in mortality rate coefficients
ranging between 0.10 and 6.12·day–1 over the study period
(Table 4). Typical specific growth rates of phytoplankton in
natural systems range between 0.2 and 0.5·day–1 in nutrient-
limited systems with a maximum between 1 and 2·day–1

where nutrients are not limiting (Reynolds 1997). Measured
specific growth rates in Saginaw Bay were 0.20–0.25·day–1

(Fahnenstiel et al. 1995). Since most of the mortality rates
were in the range of specific growth rates or greater, mussel
grazing could have been an important force in promoting
Microcystisand other grazing-resistant cyanophytes and al-
gae. In Saginaw Bay, mussels had the strongest hypothetical
grazing impact on mortality during 1992, which was the first
year the mussels were there in all seasons and the biomass
was high. In 1994 and 1995, values were more modest but
were about the same as algal growth rate. However, in the
nonbloom years of 1993 and 1996, calculated grazing im-
pact was also appreciable. The potential impact of mussel

grazing was also high in western Lake Erie, where Bunt et
al. (1993) estimated that mussel clearance of the water col-
umn was 0.4–1.0·day–1, and a more recent estimate (H.A.
Vanderploeg, unpublished data) puts it at ~1·day–1.

High filtering rates, which would favor the selection pro-
cess forMicrocystis, were dependent on composition of the
algal community. Experiments with naturalMicrocystis
showed that F(<53) and FA(<53) were greatest when
cryptophytes were added to the seston. Particularly notewor-
thy is the zero or negative values ofF(<53) andFA(<53) in
the experiment with Saginaw Bay seston that became very
high with the addition ofRhodomonas. If selective rejection
was operating as a mechanism for dominance ofMicrocystis
in July 1995 in Saginaw Bay, then filtering rates had to be
higher at an earlier time. The relatively highF(<53) and
FA(<53) for unmodified Lake Erie seston of 1995 probably
follow because cryptophytes and various flagellates were the
dominant component of the phytoplankton afterMicrocystis.
Thus, composition of the algal community could have been a
factor in whether a bloom occurred.

The production of loosely consolidated pseudofeces is
consistent with the return of viableMicrocystisto the water
column for continued growth. Baker et al. (1998) showed
that pseudofeces produced in various combinations of labo-
ratory algal cultures, clay suspension, and laboratory-
produced detritus were diffuse. Moreover, they showed that
the algae in the pseudofeces were alive and continued to
grow when cultured.

Did zebra mussels select for a toxic grazing-resistantM.
aeruginosastrain?

That zebra mussels showed low filtering rates and nega-
tive behavioral responses to the LE-3 toxic strain but not to
the PCC and UTEX toxic strains raises the possibility that
there may have been a selection for a particularly toxic or
unpalatable strain ofM. aeruginosain Lake Erie. This argu-
ment would also apply to Saginaw Bay, where
M. aeruginosawas also toxic and unpalatable as measured
by microcystin concentration and mussel response. It can be
argued that this response is not just a question of micro-
cystin content because the mussels would have ingested
great quantities of microcystin in the experiments with the
PCC 7820 strain. There was probably selection for large
M. aeruginosacolonies because selective rejection was only
efficient with large colonies.

Why were there noMicrocystis blooms in the Hudson
River and shallow Dutch lakes?

It is important to consider that other factors such as light
intensity (Mur et al. 1999), nutrient ratios (e.g., Smith 1983),
and water temperature (Robarts and Zohary 1987) can affect

© 2001 NRC Canada

1218 Can. J. Fish. Aquat. Sci. Vol. 58, 2001

Year

Variable 1992 1993 1994 1995 1996

Biomass (g·m–2) 43.33 3.15 2.17 2.87 9.38
Fraction of water column cleared (day–1) 2.04–6.12 0.15–0.45 0.10–0.30 0.14–0.42 0.44–1.32

Table 4. Dreissena polymorphabiomass (Nalepa et al. 1999; T.F. Nalepa, unpublished data) and grazing impact on desir-
able algae expressed as the fraction of the water column cleared (= mortality rate coefficient) in the inner portion of
Saginaw Bay assuming a clearance rate of 10–30 mL·mg–1·h–1 (»38–129 mL·cm–2·day–1 for mussels in our study), which
were typical low and high values measured there by Fanslow et al. (1995).
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competitive interactions betweenMicrocystis and other al-
gae. It is not surprising that zebra mussel selective rejection
did not lead to blooms of toxic nitrogen-fixing cyanobacteria
such asAphanizomenonandAnabaena, which would be fa-
vored under very low nitrogen to phosphorus ratios, because
Lake Erie and Saginaw Bay have moderate and high ratios,
respectively (Holland et al. 1995; Johengen et al. 1995).
Blooms of large colonialAphanizomenonhave occurred in
eutrophic (i.e., low nitrogen to phosphorus ratio) Oneida
Lake in late summer and autumn since the establishment of
the zebra mussel (Horgan and Mills 1997).Microcystisand
many other cyanobacteria have growth optima above 25°C,
whereas green algae and diatoms have optima considerably
below 25°C (Robarts and Zohary 1987). Thus,Microcystis
blooms will occur only in summer and be favored by
warmer temperatures.

It would seem puzzling at first thatMicrocystis has not
dominated in certain other systems such as the Hudson River
(Caraco et al. 1997; Smith et al. 1998) or shallow Dutch
lakes (Reeders et al. 1989; Reeders and Bij de Vaate 1990) if
zebra mussel grazing was the cause of blooms in other loca-
tions. The disappearance, rather than promotion, ofMicro-
cystis in the Hudson River (Smith et al. 1998) may be
related to strain type. The maximum fraction of the water
column cleared by the mussels was estimated to be
~0.7·day–1 (Caraco et al. 1997; Smith et al. 1998), which is
an appreciable rate for affecting phytoplankton composition
through selective rejection. As noted above, Bastviken et al.
(1998) showed thatMicrocystis colonies from the Hudson
River were grazed at rates that were 25% of the maximum
rate for preferred algae. Thus, grazing may not have been a
force to favorMicrocystis, especially in view of its slower
growth rate (Reynolds 1997). We cannot be sure of the rela-
tive roles of toxicity or size in this lack of rejection, since
the colonies in the Hudson River were relatively small (47mm)
and toxin concentration was not measured.

Was there less of a selective force for the development of
large unpalatableMicrocystiscolonies in the Hudson River?
BecauseMicrocystisand other cyanobacteria are favored over
green algae and diatoms at low light intensities, light inten-
sity rather than zooplankton grazing, which shapes summer
phytoplankton community structure in nondreissenid lakes
(Sommer et al. 1986), may have been the primary selective
force in this turbid freshwater estuary. Light intensity was
relatively unaffected in Hudson River because suspended
sediments, although removed and packaged up in feces and
pseudofeces by the mussels, were resuspended in this high-
energy environment (Caraco et al. 1997). If light intensity
and not grazing was the selective force, thenMicrocystis in
this system may not have been preadapted for grazing resis-
tance.

The lack ofMicrocystisblooms in Dutch Lakes IJsselmeer
and Markermeer following zebra mussel introduction simply
may have been a result of mussels not having a great enough
grazing impact in these eutrophic lakes. The fractions of wa-
ter cleared by the mussels in Lakes IJsselmeer and Marker-
meer were 0.09 and 0.06·day–1, respectively.

In addition to selection for grazing-resistant algae or
cyanobacteria, mussel filtering might promote selection of
rapidly growing species that can grow faster than the mortal-
ity imposed by mussel clearance of the water column. This

strategy would be most effective where nutrient concentra-
tions are sufficient to promote rapid algal growth. Perhaps
this scenario sometimes occurs in western Lake Erie, where
phosphorus concentration is higher than in Saginaw Bay
(Holland et al. 1995; Johengen et al. 1995). We do not know
enough about the relationship between nutrient concentra-
tion and standing stock of zebra mussels to predict grazing
pressure in different systems to evaluate grazing resistance
versus growth rate strategies. Possibly, the lower incidence
of blooms in Lake Erie compared with Saginaw Bay results
from success of the rapid-growth strategy in most years.

We have shown thatMicrocystis is selectively rejected by
zebra mussels and that selective rejection can be a large se-
lective force forMicrocystisor other grazing-resistant algae
and cyanobacteria in shallow systems where zebra mussel
density is high. Because the selective rejection mechanism
requires thatMicrocystis be returned to the water column,
the mechanism would work best in turbulent systems such as
large shallow bays and lakes.
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