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[1] Land use/cover change has been recognized as a key component in global change.
Various land cover data sets, including historically reconstructed, recently observed, and
future projected, have been used in numerous climate modeling studies at regional to
global scales. However, little attention has been paid to the effect of land cover
classification accuracy on climate simulations, though accuracy assessment has become a
routine procedure in land cover production community. In this study, we analyzed the
behavior of simulated precipitation in the Regional Atmospheric Modeling System
(RAMS) over a range of simulated classification accuracies over a 3 month period. This
study found that land cover accuracy under 80% had a strong effect on precipitation
especially when the land surface had a greater control of the atmosphere. This effect
became stronger as the accuracy decreased. As shown in three follow-on experiments, the
effect was further influenced by model parameterizations such as convection schemes
and interior nudging, which can mitigate the strength of surface boundary forcings. In
reality, land cover accuracy rarely obtains the commonly recommended 85% target. Its
effect on climate simulations should therefore be considered, especially when historically
reconstructed and future projected land covers are employed.
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1. Introduction

[2] Human activities are transforming the surface of the
Earth at an accelerated pace. Such disturbance of the land
can affect local, regional, and global climate by changing
the energy balance on the Earth’s surface and the chemical
composition of the atmosphere [Chase et al., 1999;
Houghton et al., 1999; Pielke, 2001]. Over the past decades,
land use/cover has been widely recognized as a critical
factor mediating socioeconomic, political and cultural be-
havior and global climate change [International Geosphere-
Biosphere Programme (IGBP), 1990; Lambin et al., 1999;
Watson et al., 2000]. Numerous attempts have been made to
understand past climate changes and to project potential
future climate changes by incorporating reconstructed his-
torical land cover changes and projected possible future
land cover changes into numerical simulations [Xue, 1997;
Pielke et al., 1999; Chase et al., 2000; DeFries et al., 2002;
Taylor et al., 2002]. Recent studies have suggested that land

use/cover change is a first-order climate effect at the global
scale [Feddema et al., 2005].
[3] Until the last decade, land cover products used in

most climate models were initially compiled from maps,
ground surveys, and various national sources [Matthews,
1983; Olson et al., 1983], which have inherent limitations
[Cihlar, 2000]. In the mid-1990s, global-scale land cover
products generated from remote sensing images became
available, and have been implemented into various land
surface schemes [e.g., Dickinson et al., 1986; Sellers et al.,
1986, 1996a, 1996b; Walko et al., 2000]. Recently, more
land cover products at regional to global scales have been
developed with enhanced qualities, such as Global Land
Cover 2000 (GLC2000) and Moderate Resolution Imaging
Spectroradiometer (MODIS) land cover [Mayaux et al.,
2004; Friedl et al., 2002]. These products have great
potential to be employed in numerical modeling systems
in the near future.
[4] However, no land cover data set is 100% accurate,

even if developed from the most advanced satellite images.
Other factors, such as the classification method, the sample
size of evaluation data, and the inherent subjective charac-
teristics of classification, can increase the uncertainties
contained in land cover data sets. Such limitations have
been recognized in the remote sensing community, and
therefore quantitative accuracy assessment has been empha-
sized in most recent land cover classification research
[Foody, 2002]. Some target accuracy thresholds have re-
cently been recommended in an attempt to provide guide-
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lines to the classification quality. Thomlinson et al. [1999],
for example, set as a target an overall accuracy of 85% with
no class less than 70% accurate. However, classification
accuracy is usually interpreted differently from the view-
point of various users. The effect of land cover accuracy for a
particular application, such as climate modeling in this study,
remains an unanswered question. The accuracy targets
commonly specified have largely not been tested from the
perspective of the operational use of land cover data.
[5] The objective of this paper was to examine how the

classification accuracy of a land cover data set employed in a
land surface scheme affects simulated cumulative precipita-
tion in a regional climate model. (Here, ‘‘regional climate
model’’ means a limited area model with high resolution,
generally with grid spacing less than 100 km, run for a
simulation time of more than approximately 2 weeks’ length,
so that the initial atmospheric conditions have been forgotten
[Jacob and Podzun, 1997].) The hypothesis of this study is
that degradation of land cover classification accuracy may
not result in a significant change in simulated regional
climate until it reaches a certain threshold. By identifying
this threshold, the requirement of classification accuracy in
regional climate simulation analysis can be determined.
[6] In addition, three follow-on experiments were con-

ducted to investigate how some model parameterizations
influence this effect. The parameterizations examined in this
study are the convection schemes and interior nudging,
which have been shown to influence the atmospheric
response to surface boundary forcing [Weaver et al., 2002;
Castro et al., 2005]. These follow-on experiments help
illustrate how land classification error can propagate to
factors that govern precipitation in the model.

2. Methodology

[7] A regional climate model was utilized to simulate
the main wet season from March to May for the year 2003
in East Africa. To better represent the land surface char-
acteristics, the default land cover in the model was
replaced by a newly developed land cover product from
remote sensing images. On the basis of this new land
cover, classification error with increasing magnitude was
then simulated. Cumulative precipitation from simulations
with different classification accuracies was then examined.

2.1. Regional Atmospheric Modeling System

[8] The regional climate model used for the numerical
simulations in this work was the Regional Atmospheric

Modeling System (RAMS) Version 4.4 [Pielke et al., 1992;
Cotton et al., 2003]. RAMS is a three-dimensional, non-
hydrostatic, general purpose atmospheric simulation mod-
eling system, which solves equations of motion, heat,
moisture, and mass continuity in a terrain-following coor-
dinate system.
[9] RAMS4.4 is an atmospheric model which is capable

of both numerical weather prediction and regional climate
simulation. In a philosophical sense, numerical weather
prediction depends on the initial values of the state variables
of the atmosphere. On the other hand, climate simulation is
run for longer periods of time, so that it is insensitive to the
initial conditions but dependent on boundary conditions
such as ocean temperature, land use, and greenhouse gas
concentrations [Giorgi and Mearns, 1999]. This simulation
includes some parts of the climate system such as a full
treatment of atmospheric dynamics, thermodynamics and
moist processes, along with a Soil-Vegetation-Atmosphere
Transfer (SVAT) scheme. However, unlike some climate
models it does not include a fully interactive ocean, but
treats ocean surface temperature as a prescribed boundary
condition.
[10] The SVAT scheme employed in RAMS is the Land

Ecosystem-Atmosphere Feedback model, version 2 (LEAF-2)
[Lee, 1992; Walko et al., 2000]. LEAF-2 represents the
storage and vertical exchange of water and energy in
multiple soil layers, temporary surface water or snow cover,
and vegetation and canopy air. The special feature of LEAF-2
is its ability to represent fine-scale surface variations by
dividing surface grid cells into subgrid patches, which are
assigned based the land cover types in a model grid cell.
Each patch has one land cover type and responds to and
influences the overlying atmosphere in its own unique way
according to its fractional area of coverage. The biophysical
characteristics, such as albedo, leaf area index, fractional
vegetation cover, etc., are then defined for the land cover
type each patch possesses (See Table 1 and http://www.
atmet.com/html/docs/rams/RT1-leaf 2-3.pdf for the biophys-
ical characteristics of land cover types defined in LEAF-2).
In the experiments presented here, the number of patches per
grid cell was set to ten for a relatively detailed representation
of the land surface. One patch is allocated for water in all
grid cells.
[11] The soil model in LEAF-2 consisted of 11 vertical

layers spanning a depth of 2.1 m, and the soil temperature
profile in the initial conditions was determined by a devia-
tion from the initial air temperature in the lowest atmospheric

Table 1. Percentages and Some Important Biophysical Parameters of the Predominant Five Land Cover Types in GLC2000 After Cross-

Referencinga

LC Types Evergreen Broadleaf Forest Crop/Mixed Farming Open Shrubland Grassland Woodland

Percentages 18.63% 11.66% 11.56% 10.16% 10.12%
Albedo 0.06 0.20 0.12 0.11 0.08
LAI 6.00 6.00 6.00 2.60 5.70
D LAI 1.00 5.50 5.40 2.00 2.30
VFC 0.80 0.85 0.22 0.73 0.80
D VFC 0.10 0.60 0.12 0.11 0.17
Roughness length 2.21 0.06 0.08 0.04 0.83
Root depth 1.20 1.00 0.60 0.70 1.00

aLAI and VFC are maximum leaf area index and vegetation fractional cover; D LAI and D VFC are maximum decrease in leaf area index and vegetation
fractional cover. These parameters and cosine functions in temperature are utilized for simplified vegetation seasonality. See http://www.atmet.com/html/
docs/rams/RT1-leaf2-3.pdf for the more detailed biophysical characteristics of all land cover types defined in LEAF-2.
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level. The soil moisture content for the top layer was
initialized as 35% of the saturation value, which was
horizontally homogeneous over the domain. This percentage
was increased with depth to a maximum of 55% at 48 cm and
below. Moisture flux between soil layers was parameterized
in LEAF-2 based on a multilayer soil model described by
Tremback and Kessler [1985]. Both energy and moisture
fluxes between LEAF-2 components (i.e., vegetation, canopy
air, and each soil and snow cover layer) are illustrated in detail
by Walko et al. [2000].
[12] Soil moisture can play an important role in surface-

atmosphere interactions particularly through moisture
‘‘memory’’ in semiarid regions like in Kenya and Tanzania
(Figures 1 and 2a). The presence of soil moisture influences
the partitioning of latent and sensible heat, thereby affecting
the development of shallow convection. However, soil types
in East Africa are poorly mapped, and available soil
moisture values for the region are speculative due to data
scarcity. We want to emphasize that the role of surface
parameters, including soil moisture, can strongly affect the
model solution. In the absence of reliable data, and to avoid
introducing more complex uncertainties into this experi-
ment, we chose this homogeneous approach.
[13] A single grid with a 1600 � 2100 km area was used

as the model domain of the experiments, which covers most
of East Africa and a small segment of the Indian Ocean
(Figures 1 and 2a). The horizontal grid spacing was set at

50 km in consideration of the domain size and the compu-
tational requirements. For the land surface, the standard
RAMS 30-arc sec topography data set was used. The grid
extended over 32 vertical levels, with a layer thickness of
80 m near the surface and stretching to 1900 m at the top of
the domain. The model was driven by 6-hourly lateral
boundary conditions derived from National Centers for
Environmental Prediction (NCEP) atmospheric reanalysis
product [Kalnay et al., 1996]. The model time step was 90 s
with the output period set to every 6 hours. At each time
step, the reanalysis data were nudged over five outer grid
points. The months of March, April, and May of 2003 were
chosen to simulate because this time period corresponds to
the main rainy season across much of this region and the
surface effect on precipitation can be analyzed clearly.
[14] The radiative transfer scheme of Chen-Cotton [Chen

and Cotton, 1983] was used to parameterize the vertical
flux of shortwave and longwave radiation. Horizontal
diffusion coefficients were computed based on the modified
Smagorinsky formulation [Smagorinsky, 1963], and the
vertical diffusion was parameterized according to the
Mellor-Yamada scheme [Mellor and Yamada, 1982]. The
bulk microphysics parameterization was activated, which
allows the model to consider the effect of moisture in all
phases. The sea surface temperature was specified using the
1�monthly climatological data set fromNCEP [Reynolds and
Smith, 1994].

Figure 1. RAMS domain for land cover accuracy examination with Dx = 50 km.
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[15] In the basic experiment, the Kain-Fritsch (KF) con-
vection scheme [Kain and Fritsch, 1993] was used with no
interior nudging. In the three follow-on experiments, the
effects of a different convection scheme [Kuo, 1974] and
interior nudging were explored.

2.2. Land Cover Data Set

[16] The default land cover used in LEAF-2 is cross-
referenced from the Olson Global Ecosystems (OGE) data

set with 1 km spatial resolution [Walko et al., 2000]. During
the cross-referencing process, similar land categories in
OGE are connected to the land surface scheme in LEAF-2
in order to assign relevant biophysical parameters to a given
land cover type. OGE was derived from the Global Land
Cover Characterization (GLCC) database, which was based
primarily on 1 km advanced very high resolution radiometer
(AVHRR) data spanning from April 1992 through March
1993 [Loveland et al., 2000]. GLCC was one of the earliest

Figure 2. Cross-referenced GLC2000 with (a) 1 km resolution and (b) 50 km resolution, and simulated
land cover classification errors: (c) 10%, (d) 30%, and (e) 50%. Land cover types in Figures 2b, 2c, 2d,
and 2e only represent the biggest patches in grid cells. See texts for more details.
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global land cover data sets derived primarily from remote
sensing images, and it was an improvement over former
data sets compiled from maps and survey data. It was thus
widely used in various land surface schemes in climate
models and other scientific research such as agricultural
production modeling [Brown et al., 1999].
[17] However, new global land cover products, such as

GLC2000, have advantages over GLCC. They were devel-
oped from satellite images with enhanced spectral, spatial,
radiometric, and geometric quality. More importantly, land
surface conditions in this region have been substantially
changed by human activities during the past decade due to
increased population and other factors. Therefore the OGE
data set was replaced in this study by a newer land cover
product to better represent the land surface. Several global
and regional products were evaluated based on a newly
developed statistical method. GLC2000 for Africa was
found to be the most accurate for this region [Ge et al.,
2007]. GLC2000 was developed by the Joint Research
Centre’s Global Vegetation Unit, based primarily on SPOT
VEGETATION daily 1 km data acquired from 1 November
1999 to 31 December 2000 [Mayaux et al., 2004]. It uses
the Land Cover Classification System [Di Gregorio and
Jansen, 2000] developed by the Food and Agricultural
Organization and contains 27 land cover classes.
[18] For an updated representation of land surface,

GLC2000 was thus used in these experiments, replacing
the default OGE data set. In order to be able to use the
biophysical parameters adopted from the Biosphere-
Atmosphere Transfer Scheme (BATS) [Dickinson et al.,
1986], GLC2000 classes were cross-referenced (Figure 2a)
based on the results of multiple assessments [Torbick et al.,
2006]. The predominant five nonwater land cover types
after cross-referencing are presented in Table 1, with spatial
extent percentages and the most important biophysical
parameters listed. Combined, the five predominant types
comprise 62.13% of the total area, while ocean and inland
water combined comprise 12.27%. The largest inland water
body in this area is Lake Victoria in the center of the model
domain (Figure 2a). In the default LEAF-2 methodology,
the original 1 km land cover data is sampled to reduce the
demand on computing resources used to initialize the
model. Only one pixel’s value, for example, is taken from
a 5 � 5 pixel block for a configuration of a 50 km horizontal
spacing. As a result, details of the input land cover are lost.
In this study, detailed land cover input is needed, and
therefore the sampling strategy was modified to take every
1 km land cover pixel in a grid cell.

2.3. Land Cover Accuracy

[19] Land cover accuracy is commonly defined as the
degree to which the derived classification agrees with reality
[Foody, 2002]. Here, classification error at the1 km level
was simulated as a random difference from GLC2000
(Figure 2a), the initial baseline land cover which was
assumed to be 100% accurate. Specifically, random locations
in the 1 km GLC2000 were selected, and the original land
cover type at each of these selected locations was replaced
by a type randomly chosen from the five predominant types
(Table 1). Only land cover types could be chosen to be
randomly altered since in practice it is less likely that water
bodies are misclassified. The five predominant land classes

were chosen, because it is reasonable to assume they have
more chance to be misclassified than less abundant classes.
[20] Classification errors with magnitudes ranging from

5% to 50% at 5% intervals were generated. The magnitude
of error was determined by the proportion of converted
pixels in the 1 km GLC2000. Fifty percent error was the
maximum level tested as it was assumed that most land
cover products could reach 50% accuracy levels. These 1 km
land covers with degraded classification accuracies were
then used to initialize the land surface in RAMS simula-
tions, and the behavior of simulated results was examined.
[21] In Figure 2, 10% (Figure 2c), 30% (Figure 2d), and

50% (Figure 2e) classification errors are presented. For the
sake of clarity, only the most predominant patches (see
section 2.1 for the concept of patch) in each 50 km RAMS
grid cell are illustrated because simulated errors and their
gradual increase would be hard to see at a 1 km resolution
(Figure 2a). Figure 2b presents the land cover in 50 km
resolution, which was assumed to be 100% accurate, with
each grid cell showing only its most predominant patch.
Figures 2c, 2d, and 2e show those model grid cells with the
biggest patches changed following the introduction of ran-
dom classification errors.
[22] Despite random selection at1 km resolution, the

errors do not appear to be distributed randomly over the
domain when viewed at 50 km level. Instead, they tend to
occur at the transition zones betweenmajor types (Figure 2b),
where it is likely that two land cover types are approxi-
mately equal in frequency within the grid cell. Converting
a few pixels may alter which land cover type is the
predominant patch. For example, most changes in evergreen
broadleaf forests in Figures 2c, 2d, and 2e occur at the edge
of the Congo forest. For grid cells with strongly dominant
types, such as the Congo forest, random errors are less likely
to change the dominance of the biggest patch. Transitions to
woodland appear to have a higher frequency than do the
other four types (see especially in Figure 2e). This is due to
the woodland appearing in a fragmented arrangement
(Figure 2a). Similarly, transitions to water as the largest
patch show up at the edges of lakes and the ocean, as seen
in Figures 2c, 2d, and 2e, although water was not consid-
ered in the process of randomization (Table 1).
[23] In each experiment, RAMS was run 11 times, each

with different amounts of classification error ranging from
zero to 50%. The effect of classification accuracy on
simulated regional climate was then examined by compar-
ing the behavior of simulated precipitation within this range
of accuracies to determine patterns. Then, patterns of
behavior were compared across experiments to investigate
the impacts of model parameterizations.

3. Results

3.1. Basic Experiment

[24] In the basic experiment, RAMS was run with the KF
convection scheme and without nudging. The performance
of RAMS was first assessed by comparing the RAMS’
simulated accumulated precipitation for the period March–
May 2003 against observed data. In this region, rainfall data
from weather stations are scarce with extremely low spatial
and temporal frequency. A full comparison over the whole
domain was therefore not possible. The precipitation
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retrievals from the Tropical Rainfall Measuring Mission
(TRMM) satellite were thus used. TRMM is a joint satellite
between NASA and the Japan Aerospace Exploration
Agency (JAXA), launched in November 1997 [Simpson et
al., 1988]. Its primary mission is to measure precipitation in
the tropics, using both active and passive microwave instru-
ments. This study used TRMM 3B42 version 6 data
products which have 3-hour temporal resolution and
0.25� � 0.25� spatial resolution. Data plots can be generated
directly online at http://lake.nascom.nasa.gov/Giovanni/
tovas/TRMM_V6.3B42.2.shtml.
[25] Figure 3 shows both the simulated accumulated

rainfall from RAMS and observed accumulated rainfall
from TRMM. RAMS underestimates precipitation in some
areas, especially near the left and right boundaries, which
may be due to the effect of boundary nudging. However, it
captured some major features, such as over the Congo
forest. The spatial distribution of simulated precipitation is
fairly similar to observations, especially considering that no

attempt was made to ‘‘tune’’ model parameters and that our
configuration of RAMS has a lower spatial resolution
(50 km versus about 27 km). In Figure 4, precipitation is
compared over time. The correlation coefficient is 0.336
for the whole time period, and 0.438 when the spin-up time
of the first 20 days is omitted. Fidelity to observation
improved over time, and the cessation of the ‘‘long rains’’
(day 77) is well replicated.
[26] The differences in precipitation between the simula-

tion without land cover errors and simulations with errors
(5%, 10% . . . 45%, 50%) were then examined. For the
convenience of discussion, let R00, R05, R10 . . . R45, R50
denote these 11 runs and R05-R00, R10-R00 . . . R45-R00,
R50-R00 denote the differences between runs. R10-R00,
R30-R00, and R50-R00 are presented in Figure 5. If
classification accuracy does not have any impact on simu-
lated precipitation, then these differences are expected to be
close to zero. However, as illustrated in Figure 5, precipi-
tation differences are not minute. The impact on precipita-
tion increases as classification accuracy worsens. It is also
noticeable that most of the largest differences occur in the
Lake Victoria area, even though errors are scattered across
the whole domain (Figure 2).
[27] Although a full investigation of this is beyond the

scope of this paper, it is likely that the general spatial pattern
of changes in precipitation as shown in Figure 5 is due to
the mechanism stated by Charney et al. [1977] and followed
by other researchers [Lofgren, 1995; Xue, 1997;Wang et al.,
2004]. In this mechanism, change in land surface parame-
ters (e.g., albedo, vegetation fractional cover), alters the
energy budget of the coupled surface-atmosphere system.
Particularly at low latitudes, reduced heating of the atmo-
sphere, resulting from increased surface albedo, leads to a
relative sinking motion and reduced precipitation, while
decreased surface albedo and increased atmospheric heating
have the opposite effect.
[28] In the domain considered here, the unperturbed

GLC2000 land cover has nearly solid evergreen broadleaf

Figure 3. Spatial comparison of simulated accumulated
precipitation (mm) in RAMS and that from TRMM.

Figure 4. Temporal comparison of simulated cumulative
precipitation in RAMS and from TRMM. Domain-averaged
daily precipitation is normalized to 1 for the sake of
comparison for the study area.
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forest in the western part of the domain, the class with the
lowest surface albedo (Table 1). Thus the insertion of
random errors into the land cover will necessarily increase
the surface albedo, resulting in reduced precipitation in this
area. Conversely, the region surrounding Lake Victoria is
initially dominated by the crop/mixed farming class, which
has the highest surface albedo of any of the classes used in
the random processes, so the imposition of random errors
reduces the surface albedo in this region. Combined with
the ready access to water evaporating from Lake Victoria
itself, this can lead to an increase in precipitation. As
shown by Lofgren [1995], the heating of the atmosphere
near Lake Victoria due to reduced surface albedo and the
changes of other parameters is likely compounded by
release of latent heat of condensation associated with the
increased precipitation.
[29] Three measures were then utilized to depict the

precipitation differences between runs (Figure 5). The first
measure is the maximum absolute difference (both positive
and negative), which highlights only one hot spot. It
represents the largest possible difference caused by land
cover errors, but it does not give information on the overall
differences. The other two measures used are the mean
absolute difference and the standard deviation calculated
over the whole domain. They characterize the overall
magnitude and variation of the difference. As shown in
Figure 5, maximum absolute differences for R10-R00, R30-
R00, and R50-R00 are 30.6 mm, 56.7 mm, and 84.4 mm;
mean absolute differences are 4.6 mm, 6.7 mm, and
10.5 mm; and standard deviations are 6.7 mm, 9.5 mm, and
14.7 mm. The three measures all indicate an increase in
precipitation difference as land cover accuracy decreases.
[30] These three measures can evaluate precipitation

differences against a range of classification errors (5% to
50%). For the basic experiment, the black lines in Figure 6
show the behavior of precipitation difference for this range
of classification errors by illustrating the maximum and
mean absolute difference and the standard deviation. In
Figure 6a, the maximum absolute difference from the basic
experiment increases from 34.8 mm for 5% error to
84.4 mm for 50% error. In Figure 6b, the mean absolute
difference increases from 5.5 mm to 10.5 mm. Also, in
Figure 6c, standard deviation increases from 7.8 mm to
14.7 mm. From these three plots, it is evident that precip-
itation differences increase with an increase in land cover
errors in RAMS. Importantly, when the errors are less than
20%, the plots are relatively flat, and when errors are larger
than 20%, the differences increase sharply. This indicates
that a classification error of less than 20% has little effect on
the simulated precipitation in this particular experiment. The
accuracy target of 85% commonly specified in the land
cover production community can meet the requirements of
regional climate modeling. If the land cover accuracy is less
than 80%, however, its effect on climate simulation and
propagation of uncertainty should be examined.
[31] In the basic experiment results shown in Figure 6, the

level area below 20% errors has nonzero differences. This is
especially obvious for 5% error level. Adding this small
amount of classification error causes some precipitation
differences. These nonzero differences might be due to a
random noise. Above the 20% threshold, the signal rises
above the noise. It is noticeable that there is a slight leveling

Figure 5. Differences of accumulated precipitation (mm)
between simulation without land cover error and simula-
tions with (a) 10% error (R10-R00), (b) 30% error (R30-
R00), and (c) 50% error (R50-R00).
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off of the differences above the 40% level, which might be
due to a saturation effect of classification errors.

3.2. Follow-On Experiments

[32] To test the effect of model parameterizations on
atmospheric response to land cover accuracy, internal nudg-
ing and a different convection scheme were investigated. A
different convection scheme may dramatically change the
surface energy and moisture budget and hence surface
feedback to the atmosphere. The KF convection scheme,
which was used in the basic experiment, is known to
produce more precipitation than the Kuo scheme, especially
in areas of steep terrain [Castro et al., 2002, 2005]. The
nudging is used to relax the model solution toward the input
reanalysis data continuously at each time step by adding
artificial tendency terms (based on the difference between
the two states) to the prognostic equations. With interior
nudging, the surface boundary conditions tend to have
weaker control on the vertical motion and distribution of
precipitation, compared to no interior nudging [Weaver et
al., 2002; Castro et al., 2005]. Therefore both convection
scheme and interior nudging may influence the effect of

land cover accuracy on simulated precipitation in RAMS.
Other model aspects can also modify the influence of
surface forcing on simulated precipitation; however, nudg-
ing and convection schemes are often used for such evalua-
tions [e.g., Weaver et al., 2002; Castro et al., 2005].
[33] In the basic experiment described above, the KF

convection scheme was used with no interior nudging,
which allowed the model to have a stronger response to
surface boundary forcing. In the follow-on experiment 1,
the Kuo scheme was used with no interior nudging; In the
follow-on experiment 2, the KF scheme was used with
interior nudging applied; Also, in the follow-on experiment 3,
the Kuo scheme was used together with interior nudging.
When interior nudging was used, the timescale was set to
1 day, which is larger than that specified in the RAMS User
Guide [Castro et al., 2005]. In each of these three follow-on
experiments, RAMS was run 11 times, each with a different
amount of classification error ranging from zero to 50%,
similar to the basic experiment.
[34] In Figure 7, accumulated precipitation is presented

for the basic experiment and the three follow-on experi-
ments, all with no classification error. As expected, the Kuo

Figure 6. (a) Maximum absolute differences, (b) mean absolute differences, and (c) standard deviations
of precipitation from basic experiment (Kain-Fritsch), follow-on 1 (Kuo), follow-on 2 (Kain-Fritsch with
interior nudging), and follow-on 3 (Kuo with interior nudging).
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scheme produces much less precipitation over the whole
domain. The major peak over Congo forest, which is seen in
experiments with the KF scheme and satellite observations
(Figure 3), is not shown clearly in experiments with the Kuo
scheme. There is not much difference between these two
schemes over dry areas, where both schemes tend to
underestimate the precipitation. The interior nudging seems
to have little effect on the accumulated precipitation.
[35] In each follow-on experiment, precipitation differ-

ences between simulations with and without classification
errors were then investigated by examining the maximum
and mean absolute differences and the standard deviation as
in the basic experiment. In Figure 6, the behaviors of these
three measures against a range of classification errors are
presented for both the basic experiment and the three
follow-on experiments. Precipitation in the follow-on
experiments is much less sensitive to classification errors,
especially when the Kuo scheme was used. With both
convection schemes, interior nudging tends to reduce this
sensitivity. Interestingly, standard deviation plots for interior
nudging are very close to straight lines. This may be due to
the effect of interior nudging reducing the strength of small-

scale variability, which has also been reported in other
studies [e.g., Weaver et al., 2002].

4. Discussion

[36] In RAMS, each land cover type is represented by a
suite of biophysical variables: albedo, leaf area index (LAI),
fractional vegetation cover, etc. These biophysical variables
determine energy and moisture exchange between the land
surface and overlying atmosphere. Thus the effect of land
cover classification accuracy on simulated precipitation is
ultimately controlled by the changes in the biophysical
variables. Therefore the effect of classification accuracy
relies on how the surface scheme (LEAF-2 in this study)
defines these biophysical variables for each type. As the
biophysical parameters of different land cover types become
more differentiated, the effect observed in previous sections
will be more pronounced. In the hypothetical case when all
land covers have exactly the same biophysical character-
istics, classification accuracy will not have any effect on
simulated precipitation.
[37] In Figure 8, the default RAMS LAI (with the

incorporation of the GLC2000 land cover) is compared to

Figure 7. Simulated accumulated precipitation (mm) with different model parameterizations. Results
from runs without land cover error are presented.
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the satellite observed LAI product by MODIS [Myneni et
al., 2002] for May 2003. One kilometer MODIS LAI was
resampled to 50 km resolution to permit the comparison. It
is evident that the LAI in RAMS is unrealistically uniform
over most of the domain with several regions poorly
represented. Similar patterns are evident in March and
April 2003 (not shown). Other biophysical parameters in
RAMS version 4.4, such as albedo and fractional vegetation
cover, may also have this characteristic of being overhomo-
geneous since they are defined by simple mathematical
functions. Therefore it is reasonable to expect that the impact
of classification accuracy on simulated precipitation might be
even greater than described in this study.
[38] As shown in the previous sections, land cover

accuracy lower than 80% can substantially affect simulated
precipitation, especially when the surface has a greater
control of the atmosphere. This effect becomes stronger as
the accuracy decreases. Although an 85% accuracy target
has already been recommended for land cover production,

in reality this target is rarely obtained [Trodd, 1995]. For
example, the IGBP Discover Land Cover product, a land
cover layer from GLCC with global coverage, has an
overall accuracy of 66.9%, which is comfortably lower than
the specified target [Scepan, 1999]. Another layer of GLCC,
OGE, which is the default land cover data set in RAMS,
does not come with an accuracy estimate. Global accuracy
for newly developed MODIS Land Cover product (V003) is
stated to be approximately 70–80% (http://geography.
bu.edu/landcover/userguidelc/consistent.htm). When these
global land cover products are used for a specific region,
such as East Africa, the accuracy levels can be much lower
than the global accuracy. Therefore caution is needed when
using global land cover products at regional to local levels.
It should also be mentioned that global land cover products
are usually developed for land cover identification or other
general use. In order to be used in SVAT schemes in climate
models, they often need to be cross-referenced, which can
add additional uncertainties.
[39] These global products, however, have their advan-

tages. The importance of classification accuracy is well
recognized by producers. Quantitative evaluation is there-
fore conducted to provide guidelines for users. Many land
cover data sets employed in climate modeling studies do not
come with accuracy information. This is especially true for
historically reconstructed and future projected land cover
data sets that are often employed to examine the impact of
human activities on climate. Historical land covers are
usually derived from existing maps and other indirect
evidence, while future projected land covers are often
developed from spatial models that simulate how changes
in land use are likely to affect land cover. There are simply
not many options for accuracy assessment of these types of
land cover data sets. Historical and future land cover data
sets are usually used to simulate time periods that are
decades or even centuries long, much longer than the
3 months simulated in this study. The impact of land cover
accuracy may well increase over these longer time frames.
Uncertainties in those input land cover data sets may cause
great uncertainties in the output in climate models.
[40] There are aspects in this work that can be further

explored. One is the strategy that was used to simulate
classification errors. It was assumed that classification
errors occur randomly over space. In reality, they are more
likely to occur in areas with greater land surface heteroge-
neity and not in homogeneous landscapes such as the
Congo forest. Also, the original land cover types were
replaced by random types from the five predominant types
without considering the biophysical similarities between
types. Land cover types with similar physical appearances
or similar spectral features in satellite images are more
likely to be misclassified.
[41] A second aspect relates to the configuration of

RAMS. Factors such as horizontal grid spacing and multiple
nested grids may influence the effect observed in this paper.
The mosaic method of accounting for subgrid variability in
land cover does not take into account certain factors.
Notably, latent, sensible, and radiative heat fluxes will be
dependent on the land cover and on the characteristics of the
air in the planetary boundary layer. The boundary layer
atmospheric characteristics are likely to be spatially corre-
lated with the land cover, but the mosaic approach does not

Figure 8. Built-in LAI from RAMS and observed LAI
from MODIS, May 2003.
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account for this and thus will miss the nonlinear effects on
fluxes. The situation is further complicated by subgrid
mesoscale circulations that can be forced by land cover
heterogeneity [e.g., Weaver and Avissar, 2001]. These
factors can be sensitive to the scale over which land cover
is altered in addition to the model grid spacing. Further
investigations considering these factors are needed.

5. Summary

[42] Human activities have substantially modified the
Earth’s surface in the past and will continue to do so in
the future. The impact of human activities such as land
cover change on regional and the global climate can be
studied using climate modeling techniques. Land cover data
sets, often derived from remote sensing images, are widely
used in land surface schemes in climate models to describe
the physical surface conditions. These data sets are not
perfect, and their value is a function of classification
accuracy. In the land cover production process quantitative
accuracy assessment has almost become a required procedure.
However, the accuracy of land cover data sets and its impact
on simulated climate have largely been ignored in climate
modeling research.
[43] In this paper, the Regional Atmospheric Modeling

System was utilized to study the impact of land cover
accuracy on simulated precipitation for the East Africa
region. Classification errors were simulated as random
alterations to the land cover data set used in this study,
GLC2000. The behavior of simulated accumulated precipi-
tation over a 3 month period was then examined over a range
of land cover errors (zero to 50%). It was found that, when
the surface boundary had greater control on overlaying
atmosphere, land cover accuracy under 80% had a strong
effect on simulated precipitation. As land cover accuracy
worsened, this effect became stronger. This effect was shown
to be moderated by model parameterizations such as con-
vection schemes and interior nudging, which affected the
strength of the control that the surface exerts on the atmo-
sphere. When the Kuo convection scheme was used, RAMS
severely underestimated the precipitation over the entire
domain, and the land cover accuracy had little effect on
simulated precipitation. With interior nudging activated, the
effect of land cover accuracy also decreased, even though the
overall magnitude of precipitation was affected only slightly.
[44] On the basis of the results of this study, it can be

concluded that land cover data sets can meet general needs
in climate modeling research if the commonly recommen-
ded 85% accuracy target is obtained. In reality, however,
this is usually not the case. The reliability of land cover data
sets needs to be examined in climate modeling research,
especially those using historically reconstructed or future
projected land covers for long-term simulations.
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