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Over-lake precipitation is a key component of the Great Lakes’ water balance. Its 
estimation is, therefore, vital for planning and operational purposes. Yet, reliable over-
lake precipitation estimates are difficult to obtain because the lack of gages on the lakes 
themselves and the scarcity of gages in parts of the draining basins. Traditionally, over-
lake precipitation is estimated by distance-weighted interpolation methods. In spite of 
their wide acceptance, these methods suffer from intrinsic limitations as they fail to take 
into account the spatial variability of rainfall. Recently, multisensor products combining 
radar-based precipitation estimates and rain gage data (MPE) have provided a suitable 
alternative to estimates based on the sparse gage data. However, biases in the MPE data 
have raised serious concerns about their accuracy. A promising approach for overcoming 
the limitations of either of these methodologies for estimating monthly-averaged over-
lake precipitation is to spatially integrate the MPE data with the gage observations in a 
geostatistical framework based on universal kriging. In this work, the estimates from 
these techniques are compared to (i) more traditional methods based on the weighted 
interpolation gage data only and (ii) the available MPE data. Results for Lake Erie reveal 
that the universal kriging setup outperforms the estimation methods based only on one of 
the two data types, by providing estimates with significantly lower root mean square 
error and lower overall bias. Overall, the results demonstrate the robustness of the 
proposed approach in assimilating two different information sources for providing more 
accurate and reliable estimates of over-lake precipitation. 
 
INTRODUCTION 
 
The Laurentian Great Lakes in North America (Figure 1) are the greatest single 
freshwater resource on earth, accounting for about 20% of the world’s total freshwater 

 



and providing drinking water to 40 million U.S. and Canadian citizens, water for hydro 
and thermal power generation, and support for important shipping, fishing, and recreation 
industries.  
 

 
Figure 1. The Great Lakes basin and average MPE precipitation estimates for April 2003. 
 
It is therefore reasonable that considerable effort has been invested in understanding and 
managing the Great Lakes, starting with their water balance. However, the huge sizes of 
the overall basin (755,000 km2, Figure 1) and of the lakes themselves (e.g., 82,400 km2 
for Superior) make even this apparently trivial task quite problematic (Neff and Nicholas 
[1]). Of the four components of the net basin supply (tributary runoff, over-lake 
precipitation, evaporation, and net groundwater inflow), only runoff is relatively well 
measured (although the ungaged portion of the lakes’ watersheds varies between 22 and 
43% − Lee [2]). The remaining three components must be quantified using some type of 
model. Especially problematic is the estimation of the precipitation falling directly over 
the lakes, which is still estimated by interpolating rain gages using the Thiessen or 
inverse square distance weighting methods (Croley and Hartmann [3]; Croley [4]). In this 
region, these techniques are not very reliable, mainly because rain and snow vary 
strongly in time and space, while the lack of gages on the lakes themselves and the 
scarcity of gages in parts of the draining basins leave some parts of the lake surface 70-80 
km away from the nearest rain gage. Further, on-shore rain gages are not always 
representative of lake precipitation, since precipitation mechanisms over the surface of 
large lakes are often different from those over land. The most obvious of such distortions 
is the lake-effect snow, which takes place in late fall and winter, when cold air masses 
moving across the Great Lakes from north and west entrain the moist and relatively warm 



air floating over the lake surface. Once these air masses reach the colder southern and 
eastern lake shores, moisture condensates and precipitates in quantities considerably 
higher than over the lake surface. Differences in the precipitation mechanisms are present 
also during spring and summer (e.g., Miner and Fritsch [5]; DeMarchi [6] for Lake 
Victoria). Such factors make over-lake precipitation estimates so uncertain that the 
National Oceanic and Atmospheric Administration (NOAA) Great Lakes Environmental 
Research Laboratory (GLERL) prefers to use the average precipitation over the draining 
watershed as a surrogate for the real over-lake precipitation (Croley et al. [7]).  

Radar based precipitation estimates provide precipitation data at high spatial and 
temporal resolution over extended areas, making them very useful in storm and flood 
forecasting. However, their application for quantitative hydrology is more questionable 
due to several limitations including hardware calibration, uncertain reflectivity-rainfall 
(Z-R) relationships, ground clutter, bright band contamination, mountain blockage, 
anomalous propagation, range-dependent and seasonal biases (Smith et. al. [8]). The 
NOAA National Centers for Environmental Prediction’s Multisensor Precipitation 
Estimates Stage IV (Lin and Mitchel [9]) optimally merge hourly radar or satellite 
information and hourly rain gage data to produce real-time hourly multisensor estimates 
at 4-km resolution. Estimates are first visually quality controlled by the U.S. National 
Weather Service at the regional level and then mosaicked into a national product. The 
overall procedure is designed to overcome most of the limitations described above.  

This paper examines the suitability of MPE data for estimating monthly over-lake 
precipitation for Lake Erie and presents a new methodology for improving data 
assimilation based on a universal kriging approach. The first section describes the area 
selected for the study and the datasets that were used. The second section examines the 
suitability of MPE for over-lake precipitation estimation. The third describes the models 
developed to overcome MPE’s shortcomings and the statistical analyses used to evaluate 
their performances. Finally, the fourth section discusses model results. 
 
STUDY AREA AND AVAILABLE DATA 
 
Lake Erie is the fourth largest lake by surface area (25,745 km² with a length of 388 km 
and a maximum breadth of 92 km), the shallowest (with an average depth of 19 m), and 
the southernmost of the five Great Lakes (Figure 1). It is bounded on the North by the 
Canadian province of Ontario, on the South by the U.S. states of Ohio, Pennsylvania, and 
New York, and on the West by the state of Michigan (GLIN [10]).  Meteorologically the 
climate of Lake Erie’s shoreline is greatly affected by the lake’s influence on weather 
systems, which usually move from the West to the East shores of the lake. To the East of 
the lake, the land becomes increasingly hilly. Thus, as the moist air from Lake Erie 
travels eastward into these hilly areas, it begins to rise, cool and precipitate its excess 
water, making the southwestern corner of Lake Erie one of the wettest areas in the basin 
(the average yearly precipitation in Buffalo, New York, is 924 mm). Such convective 



precipitation patterns can have a totally different spatial correlation structure than the 
ones inferred from the more prevalent stratiform precipitation. 

Daily MPE Stage IV precipitation data for the Great Lakes region were extracted 
from the national mosaics for the summer months (April through September) in 2002 to 
2005. Stage IV estimates are a significant improvement over the previous operational 
precipitation estimation algorithms (Watkins et. al., [11]), because they account for beam 
blockage, overshooting and software errors.  

Daily precipitation data from U.S. and Canadian rain gages in the Lake Erie region 
were compiled by NOAA GLERL. To ensure statistical significance of the MPE-gage 
comparison, this dataset was reduced to include only gages featuring valid data for more 
than 90% of the examined period, thus limiting its size to 516 gages around Lake Erie.  
 
ASSESSING THE SUITABILITY OF MPE DATA FOR ESTIMATING 
OVER-LAKE PRECIPITATION IN THE GREAT LAKES BASIN 
 
Figure 1 shows that the MPE data are available for most of the Great Lakes Basin.  
However, Lake Superior and Lake Huron are covered partly by areas of zero precipitation 
values and partly by areas of extremely low values (0.01-1 mm class) with the circular 
shape typical of the Radar swath.  On the other hand, MPE data over Lake Ontario, Lake 
Erie, Lake St. Clair, and Lake Michigan show reasonable continuity with over-land 
precipitation.  Thus it seems plausible that MPE estimates could be used at best only for 
these latter lakes. 
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Figure 2. Linear Trend between gage and coincident MPE data – the bold line indicates 
the “best-fit” line while the thin line shows the 1:1 fit. 



Comparisons between gage and coincident MPE estimates in the Lake Erie region 
(76 - 87 W, 39 - 45.5 N) indicate that the MPE underestimates the gage catch by 5-20%, 
but still features a strong correlation with gage data (e.g., Figure 2).  

Other than April 2004, which has a correlation coefficient value of 0.44, all the other 
24 months of study (April 2002-September 2005) have correlation coefficient values 
ranging from 0.67 to 0.94. MPE underestimates precipitation for two main reasons: (1) 
the number of gages used to de-bias the radar estimates is limited; and (2) the gages used 
to de-bias the radar data are hourly gages, which are known for underestimating 
cumulative precipitation (Hollinger et al. [12]). 
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Figure 3. Correlation coefficient between MPE pixels and the most correlated gage 
(triangles). 

 
Figure 3 shows the spatial variation in the correlation coefficient between an MPE 

pixel and the gage that is most correlated to the pixel for a portion of the domain (78-
85W, 41-43N). Three facts should be noted: (1) while over-land MPE pixels have higher 
correlation coefficients than over-lake pixels, the latter show a smooth decrease in the 
western and eastern parts of the lake, likely due to the increasing distance from gages, 
and values comparable to similar situations over land (e.g., the area around 41.8N, 
79.5W); the lower correlation at the center of the lake is probably due to occasional mal-
functioning of the radar in Cleveland, Ohio. (2) Canadian gages show a good correlation 
with MPE despite the distance from the NWS radars. The exception is the area around 
81W, again likely due to occasional malfunctioning of the radar in Cleveland, Ohio. (3) 
In many parts of the area, correlation coefficients are high for MPE pixels very close to 
gages, but decrease rapidly when moving away from the gage, even just two-three pixels 
(approximately 10 kilometers). This indicates that, even at monthly resolution, the preci-
pitation field is far from smooth, thus making interpolation of rain gage data less reliable 
and increasing the value of using MPE data for quantifying over-lake precipitation. 



These observations suggest that, if the bias in the MPE data were removed, MPE 
could potentially provide reliable monthly precipitation estimates over Lake Erie. 
 
IMPROVING MPE ESTIMATES OF MONTHLY PRECIPITATION  
 
Simple Method 
Two methods were developed to improve monthly MPE estimates by merging MPE and 
daily rain gage data.  The simplest method adjusts the MPE data in the Lake Erie region 
by a monthly correction factor, mathematically, 
 

AVG

AVG

MPE
G

MPEMPE ×=*  (1) 

 
where  MPE* = adjusted monthly MPE; 
 MPE = original monthly MPE; 

GAVG = Average precipitation recorded by all gages in the region of application 
during a specific month; 

MPEAVG = Average MPE precipitation for pixels surrounding a gage in the 
region of application during the same month; 

 
The correction factor obtained with this method is of magnitude similar to the values 
obtained by Watkins et al., [11], though the procedures used in the two projects are quite 
different. Further, an inter-annual variation in the correction factor was noted. In 2002 the 
correction factor ranged from 1.03-1.23, and by 2005 it had dropped down to 0.95-1.12. 
Since the MPE data is available over a limited period, it is difficult to state whether this is 
due to the improving performance of MPE or an artifact of any other random factor, like 
more uniform precipitation in 2004 and 2005, better gage and radar operation, more 
consistent calibration, etc.  
 
Universal Kriging 

A shortcoming of the simple method is that the same correction is applied to the 
entire region of interest, neglecting spatial variations in the gage/MPE ratio. A way to 
overcome this limitation is by integrating gage and MPE data within a Universal Kriging 
(UK) framework (Matheron [13]). In this framework, the variable to be estimated Z(x) – 
measured at some point xi, i=1,…,n – is considered to be composed of a deterministic 
component m(x) – known everywhere in the domain – and a stationary stochastic compo-
nent Y(x) (the residual), that is:  

 
Z(x) = m(x) + Y(x)  (2) 
 

In essence, m(x) represents the “large-scale component of spatial variability” 
(Kitanidis [14]), while Y(x) represent the local deviations from this trend. For this 



application, the stochastic process are the features of the precipitation distribution as 
measured by the rain gages that are not reproduced by the MPE data, while the 
deterministic part is given by the MPE data, which are known at both the gage 
measurement and estimation locations. Since MPE data are significantly correlated with 
the gage data at the monthly scale (Figure 2 and 3), a linear transformation of the MPE 
data can be used as the trend, that is: 
 
m(x) = β0 + β1·MPE (3) 
 

The stochastic component of Z(x) is modeled using an exponential generalized 
covariance function (GCF) derived from the variogram of the residual components of the 
gage precipitation.  

 

 
Figure 4. Rectangular areas used to emulate characteristics of the central Lake Erie – 
crosses represent usable gages; the shaded square corresponds to the central portion of 
Lake Erie; the rectangular areas at its sides contain the closest gages that are available for 
over-lake estimation; the hollow squares are locations with similar geometry to the 
central basin of Lake Erie; however, only the lower-left square has a distribution of rain 
gages at its borders similar to that of Lake Erie. 
 
Evaluating MPE-based Estimates of precipitation over Lake Erie 
Direct evaluation of the MPE-based estimates of over-lake precipitation and comparison 
with traditional methods is not possible given the absence of precipitation measurements 



over the lake surface itself. Thus, an indirect evaluation was performed assessing model 
performances for 120 rectangular areas randomly selected in the region surrounding Lake 
Erie, which replicate some of the conditions present in the central part of Lake Erie 
(Figure 4). That is, these areas are 80-km wide and have at least four valid nearby rain 
gages on at least two opposite sides (rectangular areas in Figure 4). These rain gages were 
used in the estimation schemes, while gages inside the rectangular areas provide the 
ground truth. The performance comparison included MPE, MPE*, UK, and two gage-
only methods – inverse square distance interpolation (IDW) and ordinary kriging (OK). 
 
RESULTS AND DISCUSSION 
 
Table 1 shows that MPE has better correlation with the gage data and lesser RMSE than 
IDW and OK, but it clearly underestimates precipitation. MPE*, the simple scaling 
correction of MPE, has the same correlation and RMSE of MPE, but its bias is 
significantly reduced (it is actually better than that for IDW). Finally, the UK estimator 
achieves the best results with the highest correlation, lowest RMSE, and negligible bias. 
 
Table 1. Comparison of different estimators for the period 2002-2005. Median values for 
120 rectangular areas (Bold) and relative median absolute deviation (in parenthesis). 
 

 IDW OK MPE MPE* UK 

RMSE 
(mm/day) 

0.98 
(0.09) 

1.03 
(0.19) 

0.76 
(0.07) 

0.72 
(0.06) 

0.65 
(0.06) 

Correl. 
Coeff. 

0.83 
(0.04) 

0.81 
(0.06) 

0.91 
(0.02) 

0.90 
(0.02) 

0.92 
(0.02) 

Bias  (%) 
-4.29 
(3.5) 

-1.11 
(3.78) 

-7.51 
(3.19) 

-1.94 
(3.45) 

-0.45 
(1.72) 

 
Users of over-lake precipitation estimates are normally more interested to the lake-

wide Mean Areal Precipitation (MAP) than the precipitation at specific points in the lake. 
Figure 5 shows Lake Erie’s MAP estimates for total precipitation for each of the 24 
summer month considered in this study. In addition to UK, MPE, and IDW, Figure 5 
reports UK’s 95% confidence interval and NOAA’s mean precipitation for the lake 
surface (PrecipLake) and for the draining watershed (PrecipLand) derived using Thiessen 
polygons (Croley et al. [7]). The chart reveals that, because the uncertainty of the UK 
estimator is quite large, all other estimation methods fall within UK’s 95% confidence 
interval, indicating general agreement between the methods in terms of total 
precipitation. However, MPE most often yields the lowest estimate, confirming its likely 
bias. Further, PrecipLake is typically closer to UK than PrecipLand, indicating that using 



PrecipLake instead of PrecipLake should produce better net basin supply estimates, at 

 

least during the summer months. 

igure 5. Lake Erie’s Mean Areal Precipitation from different estimation methods. 

ONCLUSIONS 

iven the strong correlation with coincident rain gages in both U.S. and Canada, and the 
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smooth variation of the correlation between over-lake MPE values and gage values along 
the lake shores of Lake Erie, MPE Stage IV appears to be a good candidate for estimating 
precipitation over Lake Erie. However, successful use of MPE for precipitation 
estimation first requires a correction of its bias. This can be accomplished with a simple 
ratio correction or by employing a more sophisticated Universal Kriging setting. In both 
cases, combining information from MPE data and rain gages results in better 
performance for areas in the Lake Erie region, relative to traditional gage-only methods. 
Further, lake-wide mean areal precipitation estimates are consistent with other estimation 
methods. Thus, merging MPE and daily gage data substantially improves over-lake 
precipitation for Lake Erie. Lake Ontario and Lake Michigan also show potential for 
similar improvements, while the application of MPE to Lake Superior and Lake Huron 
will require additional radar and gage measurements in the Canadian side of these lakes. 
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