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Abstract Phytoplankton abundance and composi-

tion and the cyanotoxin, microcystin, were examined

relative to environmental parameters in western Lake

Erie during late-summer (2003–2005). Spatially

explicit distributions of phytoplankton occurred on

an annual basis, with the greatest chlorophyll (Chl)

a concentrations occurring in waters impacted by

Maumee River inflows and in Sandusky Bay.

Chlorophytes, bacillariophytes, and cyanobacteria

contributed the majority of phylogenetic-group Chl

a basin-wide in 2003, 2004, and 2005, respectively.

Water clarity, pH, and specific conductance delin-

eated patterns of group Chl a, signifying that

water mass movements and mixing were primary

determinants of phytoplankton accumulations and

distributions. Water temperature, irradiance, and

phosphorus availability delineated patterns of cyano-

bacterial biovolumes, suggesting that biotic processes

(most likely, resource-based competition) controlled

cyanobacterial abundance and composition. Intracel-

lular microcystin concentrations corresponded to

Microcystis abundance and environmental parameters

indicative of conditions coincident with biomass

accumulations. It appears that environmental param-

eters regulate microcystin indirectly, via control of

cyanobacterial abundance and distribution.
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Introduction

The Laurentian Great Lakes (USA and Canada)

constitute the largest system of fresh surface water on

earth and are an invaluable natural resource. Lake

Erie, the shallowest and smallest of the Lakes by

volume, is divided into eastern, central, and western

basins, each quite different in physical, chemical, and

biological aspects. Lake Erie has a long history of

anthropogenic perturbation (Burns 1985; Munawar

et al. 2002). Excessive nutrient loading during the

mid-twentieth century [e.g., 1.61 9 105 and

2.73 9 104 metric tons of total nitrogen (N) and

phosphorus (P), respectively, from 1966 to 1967

alone; Sly 1976] resulted in eutrophic waters in the

western and central basins. Phytoplankton biomass

increased with hypoxia/anoxia a common occurrence

during the summer (Davis 1964; Rosa and Burns

1987).

The establishment of P-reduction directives and the

invasion of non-indigenous dreissenid mussels (in the

early 1970s and late 1980s, respectively) led to

declines in primary production and algal biomass,

ultimately providing for enhanced water clarity and

bottom-water oxygen (O2) throughout western Lake

Erie (Nicholls and Hopkins 1993; Madenjian 1995;

Fahnenstiel et al. 1998). Nuisance blooms were absent

throughout the western basin during the early 1990s,

but phytoplankton abundance increased during the

mid-1990s, with summer blooms dominated by the

cyanobacterium, Microcystis aeruginosa Kützing

(Vanderploeg et al. 2001). The blooms have been

recurrent with toxic populations a common occur-

rence (Budd et al. 2002; Ouellette et al. 2006; Dyble

et al. 2008). Concentrations of the cyanotoxin,

microcystin, intermittently have exceeded recommen-

dations for drinking water and low-risk recreational

exposure (1 and 2–4 lg l-1, respectively, World

Health Organization 2003, 2004).

The instantaneous rates of phytoplankton growth

and potential for biomass accumulation throughout

western Lake Erie are controlled by nutrient avail-

ability, light, wind events, and grazing pressure,

acting singularly or in combination (Nicholls and

Hopkins 1993; Fahnenstiel et al. 1998; Wilhelm et al.

2003; Porta et al. 2005; Conroy et al. 2005). However,

the mechanisms underlying toxicity events are

unknown. Cyanotoxins are assumed to be secondary

metabolites—compounds derived from primary

metabolism, but not necessary for cell development

and thought to influence fitness and/or defense against

herbivores (Babica et al. 2006; Leflaive and Ten-Hage

2007). Given that secondary metabolites are produced

by diverse cyanobacteria encompassing varied

ecological niches, it is plausible that microcystin

synthesis is associated with and/or regulated by

environmental factors affecting cell metabolism,

growth, and ultimately, abundance (Paerl and Millie

1996). Reports that state microcystin production and/

or cell quota are influenced by select abiotic param-

eters, including temperature, irradiance, macro/micro-

nutrients, and pH (van der Westhuizen and Eloff

1985; Lukac and Aegerter 1993; Song et al. 1998;

Downing et al. 2005), support this premise.

Five million people depend upon the waters of

western Lake Erie for consumption, transportation,

power, recreation, and a host of other uses (Fuller

et al. 1995). The occurrence of cyanobacterial blooms

and their deleterious consequences upon water qual-

ity, utilization of affected waters, and human health

(Paerl 1988; Pilotto et al. 1997; Hitzfield et al. 2000)

have raised concerns to the sustainability of western

Lake Erie as a natural resource. Our understanding of

the factors influencing bloom proliferation requires

knowledge of the synergistic interactions and/or

feedbacks between community composition and

water-column properties, as well as a comprehension

of the bloom-forming taxa within the context of the

overall community (Millie et al. 2008). Here, we

characterize phytoplankton composition/abundance

and the environmental conditions influencing com-

munities during late-summer, a period when bloom

proliferation typically is greatest throughout the

basin. We hypothesized that (1) environmental con-

ditions vary, both intra-annually and across western

Lake Erie, and (2) these variances provide for

spatially and temporally explicit patterns of phyto-

plankton composition/abundance and toxicity that

can be explained by proximate causes (e.g., physical,

biological forcing).

Materials and methods

Study site and sample acquisition

Lake Erie’s western basin (Fig. 1) comprises ca.13%

of the Lake’s total surface area (ca. 3,300 of
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25,690 km2, Hartman 1973). Western Lake Erie has a

water retention/replacement time of 51 days (consid-

erably less than the 2.6 years for the entire lake) and

resembles a sub-littoral zone with respect to limno-

logical conditions. The extreme shallowness of the

basin (mean depth of 7.4 m, maximum depth of

19 m) allows waters to warm rapidly upon the onset

of high temperatures and water-column stratification

only occurs during wind-free periods (Chandler 1940;

Bolsenga and Herdendorf 1993). Water from the

Detroit River (draining the oligotrophic ‘upper’ Great

Lakes) flows into northwestern Lake Erie and con-

stitutes 80% of the basin’s total inflows. Water from

the Maumee River flows into the southwestern

portion of the basin and contributes ca. 10% of the

basin’s total inflows. The Maumee River drains a

large watershed (ca. 17,100 km2) dominated by

agricultural activities and is the tributary contributing

the largest storm runoff (ca. 25% of the total) within

the Lake Erie basin (Bolsenga and Herdendorf 1993).

Synoptic survey cruises throughout the western

and southern regions of Lake Erie’s western basin

were conducted from 9 to 11 August 2003, 28 to 30

August 2004, and 21 to 23 August 2005. Master or

supplemental sampling stations were established

along distinct transects (A, B, C in 2003 and D, E,

F in 2004 and 2005; Fig. 1). At master stations,

Secchi depth was measured and the water column

characterized using a specific conductance (SpCond)

–temperature (Temp)–water column depth (ZWC)

profiler (Sea-Bird Electronics, Inc.; Bellevue, WA,

USA), additionally equipped with sensors for down-

welling photosynthetic active radiation (PAR), O2,

hydrogen ion (pH), fluorometry (Fluor), and trans-

missometry (Trans). A LI-190SA cosine sensor

interfaced with a LI-1000 data logger (Li-Cor Bio-

sciences, Inc.; Lincoln, NE, USA) was mounted on

the ship’s infrastructure for continuous acquisition of

surface PAR. Modified Niskin bottles (all rubber

parts were replaced with Teflon-coated or silicone;
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Fig. 1 Sampling stations throughout Lake Erie’s western

basin. Inset Study area relative to the Laurentian Great Lakes

and Lake Erie. Symbols for stations are labeled as sampling

transect (A–F) and station number (subscript), whereas

supplemental stations are delineated only as symbols
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Fahnenstiel et al. 2002) were cast to collect sub-

surface water (1 m depth—midpoint of bottle) for

abiotic and biotic characterization. Sub-surface sam-

pling was based upon chlorophyll (Chl) fluorescence

profiles (obtained via CTD casts) indicating that

phytoplankton abundance throughout the upper water

column (1–2 m depth) was uniform. At supplemental

stations (in 2003), water for selected biotic analyses

only was collected.

Physical and chemical parameters

Light parameters were determined using equations

from Wetzel (2001) and Fahnenstiel et al. (2000).

Diffuse attenuation coefficients (KD) were calculated

from PAR profiles. The euphotic depth (ZE) was

assumed to equal the depth of 1% of surface irradiance

(I0) and considered equivalent to ZWC for instances

where values of ZE exceeded ZWC. Depth-specific

irradiance (IZ) was calculated as:

IZ ¼ I0e�KDZWC ð1Þ

and water column irradiance (IZWC) was calculated

by integrating Eq. 1 over the mixed layer, or:

IZWC ¼ I0=KDZMð Þ 1� e�KDZM
� �

ð2Þ

where ZM is the depth of the mixed layer. Because of

the shallow depths at all stations (see ‘‘Results’’) and

the usual isothermal nature of the water column, ZM

was considered equivalent to ZWC. A 3-day mean

(ĪZWC) was calculated (from values of IZWC for the

day of sampling and the preceding 2 days) to

‘average out’ single-day variation and to be more

consistent with respect to phytoplankton generation

times (Fahnenstiel et al. 2000).

Dissolved nutrient concentrations in filtrates were

determined after drawing aliquots of water under low

vacuum through pre-rinsed, tared 0.7-lm glass fiber

filters or 0.4-lm polycarbonate filters. Total-, partic-

ulate-, and soluble-phosphorus (TP, PP, and SP) were

measured using standard colorimetric procedures on

an Auto Analyzer II (Davis and Simmons 1979).

Aliquots for TP initially were stored in acid-cleaned

Pyrex test tubes at 5�C, later digested in an autoclave

(after addition of potassium persulfate), and mea-

sured as SP (Menzel and Corwin 1965). Particulate

organic carbon (POC) and particulate organic nitro-

gen (PON) concentrations of whole water samples

were determined using a Model 1110 carbon (C)–

hydrogen (H)–N elemental analyzer (CE Elantech,

Inc., Lakewood, NJ, USA). Total carbon dioxide

concentration was derived from alkalinity and pH

measurements (Vollenweider 1974). Particulate

(molar) N:P, C:P, and C:N ratios were calculated

from PON, PP, and POC concentrations, respectively.

Biological parameters

Total phytoplankton within whole-water aliquots

were both preserved (using Lugol’s iodine solution)

in amber bottles and drawn under low vacuum (no

greater than five in. Hg) onto glass fiber filters.

Cyanobacterial colonies and trichomes within whole-

water aliquots were isolated onto 53-lm nitex mesh

and ‘washed’ with distilled water onto glass fiber

filters under low vacuum (Vanderploeg et al. 2001;

Dyble et al. 2008; Fahnenstiel et al. 2008). Dissolved

microcystin within aliquots of 0.7-lm filtered water

was concentrated onto Waters Oasis HLB C18 solid-

phase extraction (SPE) cartridges (in 2004 only).

Filters and SPE cartridges were immediately frozen

and stored at -80�C for later analyses.

Phytoplankton abundance and composition were

assessed using photopigment characterization and

microscopic enumeration. For photopigment analy-

ses, frozen filters were placed in 100% acetone,

sonicated, and extracted in darkness at -20�C for

12–16 h. Filtered extracts were injected directly into

a Model 600E HPLC (Waters Corp., Milford, MA,

USA) equipped with a single monomeric (Microsorb-

MV; 100 9 4.6 mm, 3 lm; Varian, Inc., Palo Alto,

CA, USA) and a single polymeric (Vydac 201TP,

250 9 4.6, 5 lm; The Separations Group, Inc.,

Hesperia, CA, USA) reverse-phase C18 columns, in

series. Pigments were quantified by integrating chro-

matographic peaks generated by an in-line, Waters

2996 photodiode array detector and calibrated from

authentic pigment standards. Mobile phases, solvent

flow rates, and column temperature followed that are

described in Pinckney et al. (1996).

Qualitative microscopic examination of plankton

at time of sampling revealed that basin-wide phyto-

plankton communities were comprised in all study

years of bacillariophytes, chrysophytes, cryptophytes,

pyrrophytes, chlorophytes, and cyanobacteria. Photo-

pigment suites useful as chemotaxonomic biomarkers

for these phylogenetic groups included: fucoxanthin,
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diadinoxanthin, Chl c1/2—bacillariophytes and chrys-

ophytes, alloxanthin, b, e-carotene, Chl c1/2—crypto-

phytes, peridinin—pyrrophytes, neoxanthin, violaxan-

thin, lutein, Chl b—chlorophytes and euglenophytes,

and zeaxanthin—cyanobacteria (Millie et al. 1993).

Absolute and relative phylogenetic-group Chl a

concentrations were derived from the pigment suites

using chemical taxonomy (CHEMTAX) matrix fac-

torization (Mackey et al. 1996, 1998). CHEMTAX

optimizes group-specific carotenoid:Chl a ratios via

iteration and a steepest descent algorithm to identify

the minimum residual unexplained by the solution

(as root mean square error) and from which, group

abundances are calculated (Mackey et al. 1996, 1998).

Because carotenoid:Chl a ratios within phytoplankton

communities might be expected to vary depending

upon species composition, cell physiological state,

irradiance, etc., the data set was divided into annual

and transect subsets, prior to independent CHEMTAX

calculations (Mackey et al. 1998; Schlüter et al. 2000).

CHEMTAX calculations are sensitive to the initial

carotenoid:Chl a ratios identified for each group; as

such, initial ratios were chosen from those previously

derived for and/or applicable to Great Lakes phyto-

plankton (Millie et al. 2002; Schlüter et al. 2006). To

further minimize error arising from ratio variation, data

subsets were assessed independently using the initial

ratio matrix and an additional 59 matrices generated

randomly as the product of the initial values and a

randomly determined factor (F):

F ¼ 1þ S� R� 0:5ð Þ ð3Þ

where S is a scaling factor (=0.7) and R is a randomly

generated number between 0 and 1. The best 10% of

results (i.e., exhibiting the least root mean square

error) then were used to estimate mean abundances

(Millie et al. 2008).

Cyanobacteria were enumerated microscopically via

Utermöhl’s (1958) sedimentation technique, with cell

densities converted to biovolumes by means of geo-

metric figures best approximating the shape of

individual taxa. The type species of M. aeruginosa

accounted for 94.04 ? 4.61(standard error) % of the

total Microcystis abundance; accordingly, the type

species was combined with its morphospecies (i.e.,

Microcystis novacekii (Komárek) Compère, Microcys-

tis wesenbergii (Komárek) Komárek, and Microcystis

botrys Teiling) to produce a unified species complex

(Otsuka et al. 2001; Fahnenstiel et al. 2008). Microcystis

natans Lemmermann ex Skuja, Microcystis firma

(Kützing) Schmidle, and Microcystis smithii Komárek

et Anagnostidis were retained as distinct taxa.

Carbon-specific growth of bloom-forming cyano-

bacteria in 2004 were estimated by Chl a-14carbon

labeling, following the technique detailed by Redalje

(1993) and modified by Fahnenstiel et al. (2000) for

Great Lakes phytoplankton. Briefly, whole-water

aliquots in polycarbonate bottles were inoculated with

NaH14CO3 and the bottles incubated for 24 h (dawn to

dawn) in a simulated in situ incubator. Cyanobacterial

colonies and trichomes were isolated and collected,

after which photopigment analyses of these samples

were conducted. Following fraction collection of the
14C-labeled Chl a eluting from the HPLC column and

the counting of the eluant’s activity with a liquid

scintillation counter, growth rates were derived from

the rate of Chl a synthesis, using equation six from

Goericke and Welschmeyer (1993).

Intra- and extra-cellular microcystins were quanti-

fied by commercially available Abraxis ELISA kits (in

2003 and 2004) and HPLC/tandem mass spectrometry

(MS-MS, in 2005). ‘Clean’ analytical technique and

supplies (Hyenstrand et al. 2001) were utilized. For

intracellular microcystins, filters with cyanobacterial

colonies/trichomes were placed in 70:30 metha-

nol:water, sonicated, and toxins extracted for 12 h at

-20�C. After removing the solvent extract, extraction

was repeated twice again (each for 1-h). In order to

optimize purification of microcystins and to increase

analytical sensitivity for microcystins, the toxin

extracts were combined and passed through SPE

cartridges. Microcystins retained on the SPE cartridges

were eluted with 90:10 methanol:water buffered 0.1%

trifluoroacetic acid (Lawton et al. 1994). Extracellular

microcystins concentrated onto SPE cartridges at the

time of sampling were similarly processed.

For HPLC/MS-MS, extracts were injected directly

into a Model 200 HPLC (PerkinElmer Life and

Analytical Sciences, Inc., Wellesley, MA, USA)

equipped with a reverse-phase C18 (Gemini, 150 9

3 mm, 3 lm; Phenomenex, Inc., Torrance, CA, USA)

column. Microcystin congeners were separated via a

binary solvent gradient, following Lawton et al.

(1994): 1 to 5 min—10:90 [acetonitrile-0.02% TFA

(solvent A)]:[H2O-0.02% TFA (solvent B)] to 95:5

[A]:[B]; 5–12 min—95:5 [A]:[B] at a flow rate of

0.40 ml min-1 and 40�C. Congeners were quantified

via electrospray ionization (Navigator MS; Finnigan
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Mat Corp., San Jose, CA, USA), operated in single ion

monitoring mode and using nodularin as an internal

standard. ELISA and HPLC/MS-MS analyses were

calibrated with authentic toxin standards.

Statistical analyses

Data were transformed prior to statistical analysis

(where appropriate) to stabilize variance and to

increase homogeneity of normalcy. An ANOVA or

T-test assessed annual differences for physical/chem-

ical parameters, total Chl a concentrations, and

intracellular microcystin concentrations. For data

not drawn from a normally distributed population

and/or exhibiting dissimilar variance between sub-

jective groups, a Kruskal–Wallis ANOVA on Ranks

was used. A Holms–Sidak or a Mann–Whitney Rank

Sum Test assessed differences between mean pairs.

The correspondences among microcystin cell quotas/

concentrations, cyanobacterial cell densities/growth

rates, and abiotic parameters were determined using a

Pearson Product Moment Correlation Analysis.

Multivariate gradient analyses represented abiotic

(physical/chemical) and community (phylogenetic

group Chl a/cyanobacterial biovolume) relationships.

Such ordination approaches allow the simultaneous

visualization of data encompassing multiple dimen-

sions in a low-dimensional ‘space’ and affords

comparisons of environmental–biota relationships

and/or gradients in their entirety, while simultaneously

diminishing data ‘noise’ (Gauch 1982; McCune and

Grace 2002). A Principal Component Analysis (PCA),

utilizing euclidean distances, ordered sampling sites

with respect to abiotic variables. Prior to PCA,

pairwise scatter plots were constructed to illustrate

symmetric distribution of/or linear relationships

among variables (Clarke and Gorley 2006).

The between-sample similarity (S) for phyloge-

netic-group Chl a concentrations and cyanobacterial

biovolumes was assessed using the Bray–Curtis

coefficient:

Sih ¼ 100 1�
Pp

j¼1 Yi;j � Yh;j

�� ��
Pp

j¼1 Yi;j þ Yh;j

� �

( )

ð4Þ

for matrices (as Yi,j), comprised of phylogenetic

groups or cyanobacterial taxa (j = 1, …, p) across

multiple samples (i = 1, …, h). The between-sample

dissimilarity was the complement of similarity (i.e.,

100 - Sih; Clarke and Warwick 2001; McCune and

Grace 2002). For each of the community matrices,

between-sample coefficients were assigned a rank

order and ordination in two-dimensional space was

constructed iteratively, via non-metric multi-dimen-

sional scaling (MDS). Non-metric MDS is the

‘method of choice’ for ordination of community data

in its entirety—the use of ranked distances tends to

linearize the relationship between distances of

species and environmental space, thereby reducing

problems associated with single species–environmen-

tal relationships (Clarke 1993; McCune and Grace

2002). The resulting graphical presentation depicted

among-sample similarities/dissimilarities in the same

rank order as the relative coefficient dissimilarities

(i.e., sampling stations plotted close together repre-

sented comparable compositional structure, whereas

those positioned far apart represented different com-

positions). The departure from monotonicity between

the similarity/dissimilarity distances in the rank order

matrix and those in the ordination (i.e., ‘stress’;

McCune and Grace 2002) was calculated according

to Clarke and Warwick (2001). For each of the

community matrices, MDS was repeated (2509) to

ensure that the lowest ‘stress’ solutions generated by

the ordination algorithm were the best solutions.

A ‘stress’ value of \0.20 represented a useful two-

dimensional representation of the data (Clarke and

Gorley 2006).

A one-way Analysis of Similarity assessed com-

munity differences among annual sample groups and

a Similarity Percentage Analysis determined contri-

butions for each phylogenetic group/taxon to the

mean group similarity/dissimilarity (Clarke and

Gorley 2006). A forward/backward stepwise search

analysis identified the subset of taxa that best

approximated the ordination using all taxa (as

determined by a Spearman rank correlation coeffi-

cient, q[ 0.95; Clarke and Warwick 2001). The

association between abiotic and biotic rank matrices

was assessed by calculating q between elements of

the matrices and then comparing the value to a

frequency histogram created by randomly permuting

samples and recalculating q after each permutation.

Abiotic variables were matched, singly and in

combination, to ordination plots in order to select

subsets of variables (in increasing complexity) that

maximized q between biotic/abiotic rank matrices

(see Clarke and Gorley 2006).
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Results

Water-column depths at (master) sampling stations

throughout the western basin ranged from 4.5 to

10.6 m. Based on sub-surface physical/chemical

variables, annual groupings (2003/2004 and 2005)

of master stations were apparent (Fig. 2) and sug-

gested temporal variability of meteorological and/or

hydrological conditions. The initial two components

of the PCA included hydrological descriptors that

together explained the majority of total variability

among master stations; values of water-column

clarity (KD, Trans, ZE) and SpCond and values of

Temp, ĪZWC, and P availability (N:P and C:P ratios)

explained 35 and 21% of the total variability within

the first and second component, respectively.

Concentrations of SP and PP comprised ca. 21 and

72%, respectively, of basin-wide mean TP concentra-

tions (mean ± standard error; 43.14 ± 15.72 lg

TP l-1). Concentrations of TP and PP were greatest

during 2003, likely attributable to the occurrence of a

large phytoplankton bloom. Mean annual particulate

values of (molar) N:P and C:P ratios ranged from

11.55:1 to 28.91:1 and 80.04:1 to 207.85:1, respec-

tively, with ratios greater in 2003 and 2004 than in

2005 (P B 0.001; Table 1). Mean annual particulate

(molar) C:N ratios ranged from 7.31:1 to 7.77:1 and

were similar among years. Concentrations of POC

corresponded to Chl a concentrations (r = 0.98,

P B 0.0001). Mean annual ratios of particulate

C:Chl a ranged from 63.77:1 to 179.08:1 lg C:lg

Chl, with mean ratios less in 2003 than during 2004

and 2005 (P B 0.05; Table 1). Ratios corresponded

positively (r = 0.36–0.43, all P B 0.05) with ĪZWC,

Trans, and ZE, whereas ratios corresponded negatively

(r =-0.42 to -0.72, all P B 0.05) with KD and

variables indicative of phytoplankton biomass and

production (O2, pH, PP, PON, Fluor). Values for Temp

and SpCond were greatest during 2003, whereas mean

KD, Secchi, ZE, and Fluor values and mean particulate

C:N ratios were similar among years.

No evidence of an algal surface ‘scum’ was

observed at any station. Concentrations of Chl a

throughout the basin ranged from 16.42 to 832.31,

2.50–28.72, and 2.95–16.52 lg l-1 in 2003, 2004,

and 2005, respectively (Fig. 3), with the greatest

basin-wide, mean concentration occurring in 2003

(Fig. 3, inset). Concentrations were greatest offshore

the mouth of the Maumee River and decreased with

increasing distance (eastward) from the River.

Throughout the southwestern portion of the basin,

concentrations in near-shore waters (at stations within

C and D transects) generally were ca. 1.5 to 3-times

greater than concentrations in offshore waters (sta-

tions F3 and F4, Figs. 1, 3). Concentrations of Chl a

within lower Sandusky Bay (sampled only during

2003) ranged from 7.24 to 141.63, with concentra-

tions greater than 100 lg l-1 occurring at the

innermost stations (SB2 and SB3).

Absolute and relative group Chl a concentrations

were dissimilar among years (P B 0.001, Figs. 4a, 5).

Chlorophytes, cyanobacteria, and bacillariophytes

contributed the greatest mean Chl a concentrations in

2003, 2004, and 2005, respectively (Fig. 4b). The

greatest bloom event occurred in 2003 and resulted

from an accumulation of chlorophytes (ca. 727 lg

chlorophyte Chl a l-1) offshore the mouth of the

Maumee River (Figs. 1, 3, 4b). Microscopic examina-

tion at the time of sampling revealed Pandorina morum

Bory to almost solely comprise the chlorophyte

component. Significant biomass of cyanobacteria (up

to 100 lg cyanobacterial Chl a l-1) also occurred

within this bloom, with lesser accumulations occurring

throughout the basin in 2004 and 2005 (Fig. 4b).

Concentrations of cyanobacterial Chl a at the inner-

most stations within Sandusky Bay during 2003 were

ca. 100 lg l-1.
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Chlorophytes, bacillariophytes, and cyanobacteria

contributed the greatest relative concentrations basin-

wide in 2003, 2004 and 2005, respectively. These

phylogenetic groups also comprised the maximal

relative abundances observed (greater than 90%, as

group Chl a: total Chl a) at any one station. Relative

Table 1 Physical/chemical

parameters at master

stations (see Fig. 1)

throughout western Lake

Erie. Data are

means ± standard error

(2003, n = 3; 2004,

n = 15; 2005, n = 14). See

text for variable

abbreviations

*, **, *** Annual means

are different at the 0.05,

0.01, and 0.001 probability

levels, respectively
a, b, c Variable means with

distinct letters are different

at the 0.05 probability level

Variable (units) 2003 2004 2005

Temp (�C)*** 25.53 ± 0.22a 22.78 ± 0.08b 25.14 ± 0.15a

Secchi (m) 1.01 ± 0.26 1.39 ± 0.12 1.36 ± 0.13

KD (m-1) 1.28 ± 0.24 0.88 ± 0.06 0.89 ± 0.08

ZE (m) 3.81 ± 0.61 5.52 ± 0.35 5.26 ± 0.36

ĪZWC (mol quanta m-2 d-1) 7.20 ± 1.41 7.18 ± 0.55 8.28 ± 0.86

TP (lg l -1)*** 191.00 ± 167.00a,b 17.49 ± 1.40b 38.95 ± 3.67a

PP (lg l-1)*** 184.67 ± 162.67a 10.61 ± 0.97b 30.94 ± 3.24a

SP (lg l-1)* 6.33 ± 4.49a 4.83 ± 0.64b 7.60 ± 1.70a,b

PON (mg l-1)* 0.84 ± 0.60a 0.14 ± 0.02b 0.16 ± 0.02a,b

POC (mg l-1)* 6.93 ± 5.70a 0.85 ± 0.09b 0.95 ± 0.13a,b

Particulate N:P (molar)*** 19.23 ± 5.52a,b 28.91 ± 2.09a 11.55 ± 0.99b

Particlate C:P (molar)*** 128.49 ± 21.72a,b 207.85 ± 12.83a 80.04 ± 5.88b

Particlate C:N (molar) 7.48 ± 1.49 7.31 ± 0.20 7.77 ± 0.22

C:Chl a (lg:lg)* 63.77 ± 1.57a 179.08 ± 13.67b 174.60 ± 14.04b

pH ([H-1])*** 9.22 ± 0.12a 8.26 ± 0.04b 8.36 ± 0.04b

O2 (mg l-1)*** 10.57 ± 0.61a 6.25 ± 0.23b 6.98 ± 0.20c

SpCond (ls cm-1)** 308.43 ± 17.46a 255.83 ± 4.98b 269.68 ± 6.61b

Fluor (Sea Tech units) 0.26 ± 0.06 0.25 ± 0.03 0.28 ± 0.03

Trans (%)*** 14.13 ± 2.46a 42.59 ± 2.69b 31.11 ± 3.79c
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cryptophyte and chrysophyte Chl a were similar

among years and typically less than those of

chlorophytes, bacillariophytes, and cyanobacteria.

Intermittent accumulations of cryptophytes and

chrysophytes provided for relative abundances up to

75 and 47%, 69 and 34%, and 57 and 56% in 2003,

2004, and 2005, respectively, and afforded episodic

importance to the composition of the late-summer

community. Although pyrrophytes displayed a rela-

tive abundance of ca. 10% at an isolated station

during 2003 (data not shown), the overall contribu-

tion of this group to late-summer communities was

negligible. In 2003, cyanobacteria dominated the

community in Sandusky Bay (Fig. 5, inset). Water-

column optical properties (i.e., KD, Secchi), SpCond,

pH, and combinations thereof, maximized q

(Table 2) and were deemed parameters that ‘best’

delineated community patterns in a manner consistent

with that of all physical/chemical parameters

throughout western Lake Erie.

With respect to the biovolumes, cyanobacterial

communities were dissimilar (P B 0.001; Fig. 6a)

among years. To examine apparent annual differ-

ences in cyanobacterial composition, stations were

classified as 2003/2004 and 2005 sample groups (see

Fig. 6b). M. aeruginosa was the dominant and most-

widespread cyanobacterium within the 2003/2004

sample group (Table 3; Fig. 6b), contributing ca.

80% of the similarity among stations and greater than

80% of the relative biomass throughout the Lake

proper (Fig. 6c). In 2005, Planktothrix agardhii

(Gomont) Anagnostidis and Komárek was dominant
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Fig. 4 MDS ordinations of

sampling stations based on

Bray–Curtis similarities of
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concentrations. a Stations

denoted as a function of

sampling year. Symbols for

master stations are labeled

as sampling transect and

station number.

b Phylogenetic-group Chl a
concentrations for

chlorophytes (shaded),

cyanobacteria (filled), and

bacillariophytes (dashed-
clear) superimposed, as

circles of differing sizes, on

stations. Concentrations

exceeding scale values are

labeled

Aquat Ecol

123



(Table 3). Although its mean relative biomass only

was ca. 40% of the cyanobacterial biomass basin-

wide, P. agardhii accounted for up to 90% of the

biomass at select stations (refer to Fig. 6b, c).

The stepwise search analysis identified the cyano-

bacteria, M. aeruginosa, P. agardhii, Aphanizomenon

flos-aquae (L.) Ralfs ex Bornet and Flahault,

Chroococcus limneticus Lemmermann, and Merismo-

pedia tenuissima Lemmermann, to comprise the

subset that ‘best’ approximated the ordination pat-

terns derived using all cyanobacteria (q = 0.96,

P B 0.001), thereby validating the results of the

SIMPER analysis (Table 3). In 2003, qualitative

microscopic examination (at the time of sampling)

revealed P. agardhii to be the dominant taxon within

the Sandusky Bay community, with little M. aeru-

ginosa present. Water Temp, N:P stoichiometry, SP

concentration, and ĪZWC (Table 2) were deemed

parameters to ‘best’ delineate patterns of cyanobac-

terial biovolumes in a manner consistent with that of

abiotic parameters.

Intracellular and extracellular microcystin were

determined by ELISA (in 2003/2004) and intracellular

microcystin by LC-MS/MS (in 2005). As such,

reported concentrations represent the sum of all

microcystin congeners (inclusive of microcystin-LR,

-LA, -RR, and -YR, see Dyble et al. 2008). In 2003, the

intracellular microcystin concentration associated

with the bloom event offshore the Maumee River

was 0.13 lg l-1, whereas intracellular concentrations

up to 3.2 lg l-1 occurred within Sandusky Bay

(corresponding with the greatest observed cyanobac-

terial biomass, see Figs. 3, 4b). Intracellular

microcystin concentrations in 2004 ranged from 0.04

to 1.64 lg l-1 (Fig. 7a) and were considerably

greater than extracellular microcystin concentrations

(P \ 0.01; Fig. 7a). However, extracellular concen-

trations approximated or exceeded intracellular

concentrations at select offshore stations (stations
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Table 2 Environmental variables, taken k at a time, and

producing the greatest correspondence between biotic (phylo-

genetic-group Chl a concentrations and cyanobacterial

biovolumes) and abiotic (PCA) rank matrices for each k, as

measured by a weighted Spearman Rank Correlation Coeffi-

cient, q

Biotic variable k Variable combination (q)

Chl a 1 pH (0.32); SpCond (0.22)

2 pH and TP (0.33); KD and pH (0.32)

3 pH, TP and SpCond (0.33); KD, pH and SpCond (0.33)

4 KD, pH, TP and SpCond (0.33); pH, TP, SpCond and ĪZWC (0.33)

5 Secchi, pH, TP, SpCond, and ĪZWC (0.32); Secchi, KD, pH, TP and SpCond (0.32)

Cyanobacterial biovolumes 1 Temp (0.38); N�P-1 (0.36)

2 SP and N�P-1 (0.49); Temp and SP (0.45)

3 Temp, SP and N�P-1 (0.50); SP, N�P-1 and ĪZWC (0.47)

4 Temp, SP, N:P and ĪZWC (0.51); Temp, SP, N:P and SpCond (0.47)

5 Temp, SP, N:P, Z and ĪZWC (0.49); Temp, SP, N:P, SpCond and ĪZWC (0.48)

Bold type indicates overall optimum value for each biotic matrix. The two best variables or combinations thereof, for each k, are

listed

See text for variable abbreviations
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E3 to E6, refer to Fig. 1). In 2005, intracellular

microcystin concentrations ranged from non-detect-

able to 0.14 lg l-1 (mean ? standard error; 0.04 ?

0.01 lg l-1).

Annual associations between intracellular micro-

cystin and cyanobacterial Chl a concentrations were

distinct (Fig. 7b). Intracellular concentrations corre-

sponded to Microcystis cell abundance (r = 0.65,

n = 11 and 0.58, n = 14 in 2004 and 2005,

respectively; both P B 0.05), but not with Plankto-

thrix cell abundance. In 2004, intracellular concen-

trations corresponded positively with SpCond, pH,

KD, TP, PP, SP, POC, POC, and PON and negatively

with ZE and Secchi (P B 0.05, n = 15).

Because M. aeruginosa and P. agardhii are known

producers of microcystin throughout Lake Erie (Rinta-

Kanto and Wilhelm 2006; Dyble et al. 2008), normal-

izations for microcystin cell quotas used the collective
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cell densities for these taxa. In 2004, values of

microcystin cell quotas ranged from 5.03 9 10-8

to 8.51 9 10-7 lg cell-1 (mean ± standard error;

2.62 9 10-7 ± 6.65 9 10-8 lg cell-1) and cyano-

bacterial growth rates from 0.03 to 0.33 d-1

(mean ± standard error; 0.10 ± 0.02 d-1). Microcy-

stin cell quotas corresponded positively and negatively

to pH and ĪZWC, respectively (P B 0.05, n = 11), but

did not correspond to growth rates (P [ 0.05). The

minimal cell quotas (mean ± standard error;

7.47 9 10-8 ± 3.07 9 10-8 lg cell-1) during 2005

resulted from the negligible toxin concentrations

during this sampling period.

Discussion

Phytoplankton and environmental influences

Basin-wide dominance of late-summer phytoplankton

varied on an annual basis; chlorophytes, bacillario-

phytes, and cyanobacteria contributed the majority of

the total Chl a in 2003, 2004, and 2005, respectively.

Bloom events were spatially episodic, with the

greatest accumulations occurring along the basin’s

southwestern shoreline. The maximal observed bio-

mass arose from an immense bloom of P. morum (up

to 727 lg chlorophyte Chl a l-1), within waters

directly impacted by the Maumee River. Throughout

this bloom’s expanse, M. aeruginosa and P. agardhii

also were present (reaching 99 and 20%, respectively,

of up to ca. 100 lg cyanobacterial Chl a l-1).

Although the magnitude of the Pandorina bloom

event was surprising, accumulations of chlorophytes

and cyanobacteria, or both, throughout the western

basin were not unexpected. Both phylogenetic groups

thrive in nutrient-enriched waters (Moss 1977; Paerl

1988) and historically have been abundant throughout

western Lake Erie (Munawar and Munawar 1996;

Nicholls 1997; Makarewicz et al. 1999). Chloro-

phytes are characterized by high growth/loss rates

and a high demand for nutrients, whereas cyanobac-

teria typically have lower growth/loss rates and a

lower nutrient demand (than chlorophytes; Jensen

et al. 1994; see Paerl and Millie 1996). As such,

intermittent (albeit, short-term) occurrences of local-

ized chlorophyte dominance might be expected

for phytoplankton blooms ‘fueled’ by nutrient-rich

Maumee River inflows.

The spatial- and temporal-variability of phyto-

plankton abundance/composition throughout the

western basin appears to be controlled by hydrologic

processes (also see Wallen and Botek 1984). Water

clarity (KD, Secchi), pH, and SpCond were environ-

mental parameters that ‘best’ delineated patterns of

phylogenetic-group Chl a throughout western Lake

Erie. Such parameters are conservative and together

act as useful tracers for water mass movements (water

transport and mixing, tributary inflows, etc., e.g.,

Vandelannoote et al. 1999). Hydrological conditions

throughout the western basin largely are influenced by

inflows of the Detroit River (mean annual discharge of

ca. 5100 m3 s-1) and to a lesser extent, the Maumee

River (mean annual discharge of ca. 135 m3 s-1;

Herdendorf 1987). Water clarity and SpCond within

inflows of these tributaries are distinct from those of

waters within the western basin (see Sonzogni et al.

1978; Herdendorf 1987; Richards 2006). Water

masses of the Detroit River reach ca. halfway into

the western basin, before typically turning north- and/

or east-ward, whereas the Maumee River discharges

into the basin’s most southwestern portion, with flows

Table 3 Mean cyanobacterial biovolume (lm3 9 107 l-1) within and taxon contributions to total mean dissimilarity (=83.11)

between 2003/2004 and 2005 sample groups (refer to Fig. 5a)

Taxon 2003 and 2004 2005 Contribution (%) Cumulative %

Microcystis aeruginosa Kützing 35.13 4.78 33.32 33.32

Planktothrix agardhii (Gomont) Anagnostidis 3.05 9.59 12.78 46.09

Aphanizomenon flos-aquae (L.) Ralfs ex Bornet and Flahault 3.28 3.60 8.89 54.98

Microcystis smithii Komárek et Anagnostidis 1.97 0.01 6.71 61.69

Chroococcus limneticus Lemmermann 0.00 1.10 5.17 66.86

Anabaena spp. 0.02 2.50 4.97 71.83

Taxa are ordered in decreasing contributions, as determined by Similarity Percentage Analysis. Taxa contributing to the initial 70%

of the total dissimilarity are listed
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predominantly directed eastward. During periods of

persistent north or northeastern winds, Detroit River

flows may reach the western and southern shorelines

of the basin and Maumee River flows can ‘pile up’

offshore the river mouth and/or be directed along the

basin’s southern shoreline (Kovacik 1972; Herdendorf

1987). Mixing of such high-volume water masses

(coincident with the basin’s shallow depth) ensures

the formation of transitory and spatially explicit

environmental gradients, or ecotones, where species-

specific growth responses enable opportunistic taxa to

accumulate large biomass. Water circulation then can

disperse or transport phytoplankton biomass through-

out the basin.

The combination of P-availability, ĪZWC, and Temp

as parameters delineating cyanobacterial patterns

suggested that biotic processes (most likely, resource-

based competition) controlled cyanobacterial abun-

dance and compositional dynamics throughout the

western basin. Healey and Hendzel (1980) designated

stoichiometric ‘thresholds’ of C50.82:1 and[100.43:

1 lg C:lg Chl a to denote moderate and severe

nutrient deficiency, respectively. Given this, mean

basin-wide ratios of C:Chl a indicated phytoplankton

to be moderately nutrient limited in 2003 and severely

nutrient limited in 2004 and 2005 (refer to Table 1).

Phosphorus is the most important nutrient regulating

the phytoplankton growth and biomass increases,

including those of cyanobacteria, in western Lake

Erie (Hartig and Wallen 1984; Fahnenstiel et al. 1998;

Wilhelm et al. 2003; c.f.; Fitzpatrick et al. 2007).

During this study, phytoplankton communities likely

were controlled by P-availability, although occur-

rences of both P- and N-deficiency were noted. In

2004, the mean basin-wide ratios of ca. 29:1 N:P and

208:1 C:P indicated that phytoplankton were P-limited

(based on the stoichiometric criteria of[22:1 N:P and

129–258:1 C:P by Healey and Hendzel 1980, to denote

severe and moderate P-deficiency, respectively).

Although the use of mean values to denote basin-wide

nutrient status of phytoplankton can be problematic—

in that extreme states of nutrient sufficiency and

deficiency are over- and under-stated, respectively

(after Hecky et al. 1993)—the large standard errors

(relative to mean values) associated with N:P and C:P

ratios signified a considerable variability in P status

(including instances of P deficiency) associated with

communities in 2003. Healey and Hendzel (1980)

designated particulate ratios of \8.3:1 C:N to denote

N-sufficiency. Because mean basin-wide C:N ratios

ranged from 7.31:1 to 7.77:1, phytoplankton appeared

N-sufficient in all years. However, instances of

moderate N-limitation (i.e., C:N ratios of C8.3:1 to

B14.6:1; Healey and Hendzel 1980) were observed at

select stations in 2003 and 2004. Such variable
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instances of contrasting nutrient-limitation are consis-

tent with the findings of Guildford et al. (2005) that

although phytoplankton in western Lake Erie often

appear nutrient sufficient (overall), P and N can, at

times, be limiting.

During periods of nutrient sufficiency, light and

temperature become the primary factors regulating

cyanobacterial growth and accumulations. Climatic

conditions during late-summer throughout western

Lake Erie include intense yet variable irradiance, low

wind speeds, and high temperatures. Microcystis and

Planktothrix optimize and exploit light-harvesting (to

the exclusion of other taxa) within near-surface, static

waters via gas-regulated buoyancy alterations and

dynamic photoadaptive capacities (Paerl 1984; Paerl

et al. 1985; Millie et al. 1990). Ratios of C:Chl a were

positively associated with ĪZWC and ZE and nega-

tively associated with variables indicative of algal

biomass and production, suggesting that alteration(s)

of Chl a:cell within phytoplankton occurred across

distinct light environments. As a phylogenetic group,

cyanobacteria prefer warmer waters than diatoms and

chlorophytes (Paerl and Huisman 2008). Although

lower water temperatures generally favor the growth

of P. agardhii over Microcystis spp. (Roberts and

Zohary 1987), basin-wide water temperatures during

2005 (when Planktothrix was dominant basin-wide)

were similar to those of previous years. However,

temperature effects are secondary to the interacting

effects of water-column mixing, light availability,

and nutrients in determining the ‘species succession’

of bloom-forming cyanobacteria (Paerl 1996) and the

relationship between light and nutrient availability in

controlling phytoplankton is not straightforward

(Fahnenstiel et al. 2000). Further, it must be remem-

bered that phytoplankton communities were assessed

in late-summer, when bloom proliferation throughout

the basin typically is greatest. Identified associations

of phytoplankton abundance and composition with

nutrient limitation and/or abiotic variables only

reflect outcomes of (short-term) environmental forc-

ing and could not be used to infer causality for inter-

and intra-annual succession and/or the timing of

bloom initiation (c.f. Millie et al. 2008). Neverthe-

less, phytoplankton composition and distribution

throughout western Lake Erie appeared to be regu-

lated by physical forcing and nutrient availability,

acting synergistically and differentially upon phylo-

genetic groups (c.f. Lean et al. 1983).

Cyanobacterial toxicity

Microcystin concentrations were within the range of

values typically reported for western Lake Erie and

other eutrophic waters of the Great Lakes, including

Saginaw Bay (Lake Huron) and Lake Ontario

(Vanderploeg et al. 2001; Murphy et al. 2003; Rinta-

Kanto et al. 2005; Dyble et al. 2008; Fahnenstiel et al.

2008). In 2004, microcystin bound within cells

contributed the majority of total microcystin; intra-

cellular concentrations were ca. five-times that of

dissolved (extracellular) concentrations. Extracellular

concentrations did approximate or exceed (up to four-

times that of) intracellular concentrations at select

offshore stations, signifying a localized release of

cellular toxin within a senescing cyanobacterial

community (e.g., Ross et al. 2006). Alternatively, as

suggested by Kaebernick et al. (2000), an increase in

extracellular microcystin may arise from active toxin

release upon cell exposure to an unidentified (high)

irradiance threshold. Nevertheless, the episodic

occurrence of equivalent or greater extracellular

concentrations (than intracellular concentrations)

refutes the dogma that most cyanotoxins are main-

tained within cells (see Rinta-Kanto et al. 2005), and

confirms the need to assess both particulate and

dissolved microcystins for realistic appraisals of

toxicity.

The physiological basis for microcystin synthesis

is unknown, and it is difficult to unequivocally

identify endogenous and/or environmental variables

that inhibit or induce its production and accumula-

tion. If microcystin synthesis is tightly coupled to cell

growth, the controls of toxin accumulation might be

related to the (immediate) environment within which

cyanobacteria exist, as they compete with other taxa

for nutrients, energy, and/or habitats essential for

optimizing growth (Orr and Jones 1998; White et al.

2003). In 2004, microcystin concentrations and cell

quotas corresponded to multiple environmental

variables. However, such variables may indicate

conditions coincident with blooms caused by nutri-

ent-laden tributary inflows (i.e., light environment, P

availability, pH, SpCond). Notably, growth rate and

microcystin cell quota did not appear to be associ-

ated. From this, it appears that environmental factors

regulate microcystin indirectly, via control of cyano-

bacterial abundance and distribution (see Orr and

Jones 1998; Wu et al. 2006; Fahnenstiel et al. 2008).
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Any attempt to delineate factors promoting toxic

phenomena must consider the phylogenetic- and

genomic-constraints of microcystin production.

Although greater microcystin concentrations often

occur in systems dominated by P. agardhii (than in

those dominated by other cyanobacterial species;

Fastner et al. 1999), intracellular concentrations

within western Lake Erie corresponded to Microcystis

abundance, but not with P. agardhii abundance. Both

the lower microcystin concentrations and the cell

quotas in 2005 than in 2004 might be explained by a

‘shift’ in cyanobacterial dominance from M. aerugin-

osa to P. agardhii. Conversely, the highest observed

microcystin concentrations (in Sandusky Bay, 2003)

were associated with Planktothrix dominance, with

little Microcystis present. Morphologically identical

toxic and non-toxic populations of M. aeruginosa and

P. agardhii simultaneously occur (Kurmayer et al.

2002, 2004; Via-Ordorika et al. 2004) and the co-

occurrence of these taxa has been documented for

western Lake Erie (Rinta-Kanto and Wilhelm 2006;

Dyble et al. 2008). Within potentially toxic popula-

tions, considerable variability in the gene cluster

associated with microcystin production exists (e.g.,

Kaebernick et al. 2000). Consequently, microcystin

cell quota can fluctuate by several orders of magnitude

(Blackburn et al. 1997; Carmichael 1997). Presum-

ably, intra- and inter-annual variation in toxin

production and/or accumulation naturally occur

throughout the western basin, dependent upon the

proportion of toxic genotypes within a mixed popu-

lation and the ‘shifts’ in the dominance of genotypic

‘strains’ and/or species with different toxicities

(Rapala and Sivonen 1998; Briand et al. 2002).

Potential ramifications of blooms

Expansive chlorophyte and cyanobacterial blooms

throughout the basin may have ecological and/or

health ramifications. Due to their toxicity, low

nutritional value, and/or a cell size/morphology that

is difficult to ingest, Pandorina, Microcystis, and

Planktothrix are not ‘preferred’ prey items for most

grazing predators (Blom et al. 2001; Łotocka 2001;

Kampe et al. 2007). Microcystins can accumulate

within the food web, with subsequent developmental

abnormalities within and/or whole-scale elimination

of biota postulated to arise from the toxicity (Ernst

et al. 2001; Katagami et al. 2004). Yet, zooplankters

and dreissenid mussels successfully prey upon

Pandorina, Microcystis, and Planktothrix (Stutzman

1995; Epp 1996; Dionisio-Pires et al. 2005) and as a

result, blooms of these taxa may have a greater role in

food web functioning in western Lake Erie than

generally believed (after Nicholls 1997). Given the

magnitude of the chlorophyte/cyanobacterial bloom

(ca. 830 lg Chl a l-1) in lake waters directly

impacted by nutrient-laden inflows of the Maumee

River in 2003, a significant amount of fixed C and

evolved O2 would be added to the system. Experi-

ments revealed that photosynthetic productivity

within the bloom to be 1,781 ± 102 lg C l-1 h-1

(mean ? standard error, n = 4), as determined from

1 h, 14C incubations (G. Fahnenstiel, unpublished

data). Given this rate and assuming a 10 h period of

optimal PAR within a representative late-summer day

(of 14 h photoperiod; c.f. Hiriart-Baer and Smith

2004), daily production of the surface bloom may

reach ca. 16–20 mg C l-1 d-1. Such a high produc-

tivity rate (and resultant daily production) associated

with localized, surface blooms within nutrient-

enriched waters is (are) not unique. Robarts (1984)

and Roberts and Sephton (1989) observed carbon-

fixation rates up to ca. 5,900 and 8,900 lg C l-1 h-1,

respectively, for phytoplankton communities (pre-

dominantly M. aeruginosa) in hypertrophic African

lakes. Conversely, bloom-forming cyanobacteria

typically are poor oxygenators of the water (Paerl

and Tucker 1995). Instances of diel and short-term

hypoxia/anoxia arising from night-time cell respira-

tion and senescence of the bloom could result and

create (localized) hazardous conditions for fauna.

Further, the export of epilimnetic algal biomass from

the Lake’s western to central basin and its subsequent

implications upon hypolimnetic oxygen budgets in

the central basin may be noteworthy (Edwards et al.

2005).

On an annually intermittent basis and/or at

specific locales, cyanobacterial Chl a concentrations

throughout the western basin exceeded guideline

concentrations of 10 and 50 lg total Chl a l-1 (under

conditions of cyanobacterial dominance) to denote

potential allergenic and moderate health concerns,

respectively, related to exposure in recreational

waters (World Health Organization 2003). Although

microcystin concentrations typically were less than

the guideline concentration for human consumption

(of 1 lg l-1, see World Health Organization 2004),
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microcystin concentrations for the Planktothrix

bloom in Sandusky Bay during 2003 and Microcystis

accumulations along the western shoreline of the

basin during 2004 exceeded this ‘threshold’ concen-

tration. In a concurrent study, Dyble et al. (2008)

reported 58 lg microcystin l-1 to be associated with

a Microcystis bloom entrapped within a swimming/

boating basin (station F2b, see Fig. 1).

Conclusions

Basin-wide phytoplankton dominance throughout

western Lake Erie varied, with chlorophytes, dia-

toms, and cyanobacteria contributing the majority of

the late-summer total Chl a in 2003, 2004, and 2005,

respectively. Bloom events were annually and spa-

tially episodic, with maximum Chl a concentrations

occurring within waters impacted by Maumee River

inflows and in Sandusky Bay.

The maximal observed biomass resulted from an

immense bloom of the chlorophyte, P. morum (up to

727 lg chlorophyte Chl a l-1), and the cyanobacteria,

M. aeruginosa and P. agardhii (up to 100 lg cyano-

bacterial Chl a l-1), in 2003. Microcystis was the

most-widespread and dominant cyanobacterium

throughout western Lake Erie in 2003 and 2004,

whereas Planktothrix accounted for up to 90% of the

relative cyanobacterial biomass at select sites in 2005.

Phytoplankton abundances were regulated by

physical factors and P-availability, acting synergisti-

cally and differentially upon phylogenetic groups.

Water mass movements and mixing were the primary

determinants for (overall) phytoplankton accumula-

tions and distributions. Taxon-specific optimization

of nutrients, light availability, and water temperature

controlled cyanobacterial composition dynamics and

bloom potentials.

Intracellular microcystin concentrations corre-

sponded to Microcystis abundance (but not to

Planktothrix abundance) and to environmental

parameters (i.e., light environment, P-availability,

pH, SpCond), indicative of conditions coincident

with cell accumulations arising from nutrient-laden

tributary inflows. Because cyanobacterial growth

rates did not correspond to microcystin cell quotas,

environmental parameters appeared to regulate micr-

ocystin indirectly, via control of cyanobacterial

species composition, abundance, and distribution.

Bloom events of significant magnitude could

impact primary production basin-wide and potentially

alter food web functioning. Cyanobacterial Chl a and

microcystin concentrations intermittently exceeded

the World Health Organization’s guideline concentra-

tions denoting human health concerns. The episodic

occurrence of sizeable extracellular microcystin con-

centrations confirmed the need to assess both

particulate and dissolved cyanotoxins for realistic

appraisals of toxicity.
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