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Abstract:

Explicitly acknowledging uncertainty and variability in model-based hydrological forecasts is a
challenging task. Many basins are either ungauged, are undergoing rapid land use change, or are
in regions expected to experience significant climate change. These factors, in addition to un-
certainty in monitoring data and model structure, collectively contribute to discrepancies between
model predictions and observations. Few hydrological modeling studies, however, routinely quan-
tify data uncertainty. Furthermore, few studies compare model forecasts to observations while
considering intrinsic uncertainty in the model itself. To bridge this research gap, we test a series
of rainfall-runoff models within gauged and ungauged basins in Eastern North Carolina (US). In
the model calibration phase, we propagate data uncertainty into model forecasts within a Bayesian
framework. We then assess model suitability by examining the distribution of Bayesian posterior
p-values (defined as the model-derived probability of a flow measurement as or more extreme
than that observed). Evaluating model performance in this way helps identify potential sources
of model bias and error, and clearly demonstrates the magnitude of those errors relative to the
various potential sources of variability and uncertainty in the model forecast.
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1 INTRODUCTION

Calibrating continuous rainfall-runoff models is a complicated and often arduous task. Notable
challenges include selecting a suitable model (and model error) structure [Young and Beven, 1994;
Wagener et al., 2001], identifying a robust set of model parameters [Beven, 1989; Beven and
Freer, 2001] and quantifying potential correlation between (and uncertainty within) those param-
eters [Duan et al., 1992; Kuczera and Parent, 1998; Montanari and Brath, 2004]. Addressing
these challenges becomes particularly important when considering how uncertainty and variabil-
ity might impact (and be incorporated into) hydrological model-based studies.

For example, it is widely recognized that hydrological modeling tools are needed to forecast flows
under future land use and climate change scenarios [Nandakumar and Mein, 1997; Anderson
et al., 2006], or in basins which are ungauged and for which a model can not be calibrated di-
rectly [Seibert, 1999; Kokkonen et al., 2003]. Yet despite the broad range of research on the
importance of uncertainty and change in hydrological modeling and water resources research [for
further discussion, see Milly et al., 2008], we find that only recently has hydrological modeling
research begun explicitly focusing on quantifying forcing data variability and propagating that
variability into model parameter estimates and flow forecasts using robust (such as probabilis-
tic and Bayesian) procedures [Vrugt et al., 2008; McMillan and Clark, 2009]. Furthermore, we
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find that few modeling studies, if any, compare model forecasts to observations while considering
intrinsic uncertainty in the model itself.

To help bridge these research gaps, we apply a well-known conceptual rainfall-runoff (CRR)
model to gauged basins along the Eastern coast of the United States (U.S.) within a Bayesian
framework in order to forecast flows in nearby ungauged basins. We begin by developing param-
eter probability distributions using an ensemble modeling approach, and then apply the calibrated
CRR models to an ungauged basin using recently obtained field data by first assuming that the field
data is deterministic (i.e. certain) and then, for comparison, allowing for uncertainty and variabil-
ity in the forcing data. We apply the derived parameter distributions to generate probabilistic
flow forecasts in the ungauged basin, and assess the suitability of the two different assumptions
regarding uncertainty in forcing data by comparing the forecasts to field observations using the
distribution of Bayesian posterior p-values.

2 MODEL AND DATA

2.1 Model
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Figure 1: Location of contributing watershed areas (grey
regions), weather stations (hollow circles) and USGS

flow gauges (inverted triangles) in Eastern Virginia (top
portion of figure) and Eastern North Carolina (bottom

portion).

To address the goals of our study,
we apply the IHACRES model, a
well-known [see, for example Dye
and Croke, 2003; Croke and Jake-
man, 2004] version of the more
general class of data-based mecha-
nistic (DBM) rainfall-runoff models
[Young and Beven, 1994] to coastal
watersheds in the Eastern U.S. The
IHACRES rainfall-runoff model has
been described extensively in previ-
ous works, including those provid-
ing an introduction to DBM rainfall-
runoff models [Whitehead et al.,
1979; Jakeman et al., 1990] as well
as those which describe and apply
the IHACRES graphical user inter-
face software package [Littlewood
et al., 1997; Jakeman and Letcher,
2003; Kokkonen et al., 2003; Ander-
son et al., 2006] and its recent devel-
opments [Croke and Jakeman, 2004;
Croke et al., 2006]. We provide a
brief description of the model here
(and in the Appendix) for reference,
and direct readers interested in a more
detailed description of IHACRES to
these earlier works.

The IHACRES model is divided into
two components. The first is a non-
linear loss module which uses a measure of evaporation (such as temperature t or pan evaporation)
to translate incident rainfall (rk, in units of mm) at time k into effective rainfall (uk, also in
mm). The second component is a linear unit hydrograph-based module which translates effective
rainfall (uk) into streamflow (xk). The IHACRES model (like many other CRR models) can divide
flow into a “quick” and “slow” component. In initial attempts to calibrate the IHACRES model,
however, we found that representing flow through a single flow path provided as good or better
model performance than representing flow through two parallel flow paths. Furthermore, we do
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not expect the catchments in our study area (as described in the following section) to generate a
significant base flow, and implement a version of the IHACRES model with only four parameters;
c (a mass balance parameter, in 1/mm, often described as an index of watershed wetness capacity),
f (a temperature modulation parameter, in 1/deg C), τw (the time constant of wetness decline, in
days), and τf (the flow response time constant, in days).

2.2 Data

The watersheds selected for this study drain into some of the most sensitive coastal embayments
in the world, including the Chesapeake Bay (VA) and the Neuse River Estuary (NC), which col-
lectively host a wide range of both natural resources and recreational and commercial uses. Unfor-
tunately, water quality in these embayments is declining due, in part, to elevated pollutant loading
levels [see, for example Borsuk et al., 2003; Fries et al., 2007; Gronewold et al., 2008]. Under-
standing the dynamics of these hydrological systems and applying that understanding to model
forecasts is critical to the success of ongoing studies and large-scale planning initiatives address-
ing these water quality problems, including those being conducted through the United States En-
vironmental Protection Agency (USEPA) total maximum daily load (TMDL) program [National
Research Council, 2001; Houck and Environmental Law Institute, 2002; Reckhow, 2003], the
most comprehensive and far-reaching water quality management program in the U.S.

Table 1: Summary of land use characteristics for each watershed in the eastern North Carolina
and Virginia study area.

Area Land use land cover percentage (%)
Watershed (km2) Agricultural Forested Urban Other
Bear Creek 149.4 41.4 26.3 0.8 31.5
Chicod Creek 116.6 56.9 24.9 3.7 14.5
Contentnea Creek 1898.5 42.2 34.4 3.0 20.5
Durham Creek 67.3 11.4 43.9 0.4 44.2
Hood Creek 55.9 5.1 69.5 0.3 25.1
Moccasin Creek 4.9 35.5 49.6 0.0 14.9
Nahunta Swamp 208.2 52.4 29.3 1.6 16.7
Piscataway Creek 72.3 26.0 67.8 0.1 6.1
Potecasi Creek 582.8 31.4 49.4 2.6 16.6
Swift Creek 696.7 34.5 26.7 2.5 36.3
Van Swamp 59.6 5.7 34.1 0.0 60.1

We delineated watersheds for eleven streams and creeks in this region (figure 1) for which the
United States Geological Survey (USGS) maintains a permanent flow gauge with a relatively
long (i.e. approximately 2-10 years) uninterrupted flow record. Land use and land cover (LULC)
information for each contributing watershed (based on 2001 imagery) was obtained from Homer
et al. [2004]. A summary of the characteristics of each watershed, including total land area and
LULC data, is included in table 1).

Daily precipitation and temperature measurements in the vicinity of the watersheds were col-
lected from the National Oceanic and Atmospheric Administration (NOAA) National Climatic
Data Center (NCDC) network of monitoring stations (figure 1). Average daily rainfall for each
watershed was calculated using the Kriging model in the fields package within the statistics
and graphics software program R [Ihaka and Gentleman, 1996]. Average daily temperature in
each watershed was assumed equal to the average daily temperature recorded at the nearest NCDC
weather station.

3 METHODOLOGY

3.1 Parameter estimation

We calibrate the IHACRES model to the eleven watersheds using the IHACRES v2.1 software
package [Littlewood et al., 1997; Croke et al., 2005] and flow, temperature, and precipitation data
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as described above (figure 1). Here, we evaluate the model over a uniform sampling grid, similar
to the exhaustive gridding (EG) procedures introduced in Duan et al. [1992], with τw ∈ [2, 300]
and f ∈ [0, 12]. A common criticism of this approach, of course, is the potential computational
effort of evaluating the model over a multi-dimensional grid. A distinct advantage of using the
IHACRES v2.1 software package to implement this procedure, however, is that for any given
pair of parameters τw and f , IHACRES implements an instrumental variable (IV) procedure to
calculate the other two parameters (i.e. c and τs), thus greatly reducing the dimensionality of the
problem.
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Figure 2: Histograms of simulated samples from marginal prior distributions (first row),
normalized likelihood functions (second and third rows), and posterior probability density

functions (fourth and fifth rows) for four IHACRES model parameters. Likelihood functions and
posterior probability density functions are presented based on a both fixed (second and fourth

rows) and variable (third and fifth rows) data inputs. Vertical dashed lines in the fourth and fifth
rows indicate 95% credible intervals.

We then, following “ensemble modeling” procedures outlined in McIntyre et al. [2005] and
McMillan and Clark [2009], combine the resulting parameter sets to form a joint probability dis-
tribution potentially suitable for application to both gauged and ungauged watersheds throughout
the region. Following guidance presented in similar studies on hydrological model uncertainty
[for example, the rainfall-runoff models presented in Duan et al., 1992; Beven, 2001; McMillan
and Clark, 2009], we remove from the IHACRES-generated ensemble of calibrated parameter
sets those with a Nash-Sutcliffe index of model efficiency (NSE) less than 0.6 [Nash and Sut-
cliffe, 1970]. We repeat this calibration procedure by modifying the rainfall data using an event
multiplier [for details, see Vrugt et al., 2009]. While some recent studies [Kavetski et al., 2006;
Stedinger et al., 2008, for example] promote more formal Bayesian approaches to addressing un-
certainty (which, among other differences, address variability from all forcing data), our focus on
variability and uncertainty in precipitation data is a reasonable simplifying step for this particular
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study. This approach leads to two joint parameter posterior distributions, each based on a different
assumption regarding input data variability, which can subsequently be used to forecast flows in
Ware Creek (and, potentially, in similar ungauged basins).
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Figure 3: Comparison between observed flow in Ware Creek (red line) and 95% credible
intervals based on model calibration without (grey region) data variability and with (black lines)

data variability.

3.2 Assessing model performance

In order to evaluate potential benefits of propagating forcing data uncertainty into IHACRES
model parameters (and model forecasts), we apply the parameter sets from each approach to
generate 100,000 daily simulations of flow in Ware Creek, a small tributary of the Newport River
Estuary in Eastern NC (see figure 1). Ware Creek does not have a permanent flow gauge, however
field-scale flow measurements were collected for model validation between 2007 and 2008 [Kirby-
Smith, 2008]. We assess the impact of each assumption regarding forcing data variability using
the Bayesian posterior predictive p-value, calculated for each flow observation as the area under
the curve of the predictive probability distribution (for a particular observation) which equals or
exceeds the observed value [for details, and for a similar application, see Gelman et al., 2004;
Gronewold et al., 2009].

4 RESULTS, DISCUSSION, AND CONCLUSIONS

The results of our parameter estimation procedure indicate that the joint parameter likelihood
function (and posterior probability density function) derived from a stochastic representation of
forcing data differs considerably from the joint parameter likelihood function based on an assump-
tion of “exact” forcing data (figure 2). For example, the marginal normalized likelihood for τf
based on an assumption of no data uncertainty (second row, fourth column) is noticeably different
from the marginal normalized likelihood for τf based on an assumption of data variability (third
row, fourth column). Similar differences are noticeable for other model parameters as well and
propagate into differences in marginal posterior probability density functions for each parameter
(fourth and fifth row in figure 2, with dashed lines indicated 95% credible intervals) as well as (see
following paragraph) into flow forecasts. While not an explicit goal of this paper, these results
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support the widely recognized view [see, for example Kuczera and Parent, 1998] that uniquely
determined model parameter values are effectively unreliable, and that appropriate assessment of
model parameter uncertainty is critical to model performance.
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Figure 4: Histogram of Bayesian p-values based on
model calibrated without (left panel) and with (right

panel) forcing data uncertainty.

Our analysis of flow forecasts in
Ware Creek (figure 3) indicates that
95% prediction intervals derived from
a modeling approach which explic-
itly acknowledges forcing data uncer-
tainty (black lines in figure 3) are con-
siderably narrower than those derived
from a modeling approach which as-
sumes invariable data (grey region in
figure 3). Furthermore, our results in-
dicate that the prediction intervals de-
rived from the model acknowledging
data variability may, in fact, fail to in-
clude a significant portion of the ob-
served flow measurements (red line in
figure 3). Our analysis of Bayesian
posterior p-values (figure 4) further
supports this observation (indicated

by the relative weight of each histogram at a p-values of 0, and of p-values less than 0.5).

While these results suggest that the approach of ignoring precipitation data variability might pro-
vide a better explanation of observed flow, we suspect that our results may be somewhat biased
based on our exclusive focus on variability in precipitation measurements alone [an approach con-
sistent with similar studies by Nandakumar and Mein, 1997; Vrugt et al., 2008; Biemans et al.,
2009]. We leave analysis of flow measurement error and other forcing data for future research, and
conclude by acknowledging the potential advantages of our proposed model evaluation procedure
which, unlike more common approaches based on point estimates of flow [such as the Nash-
Sutcliffe index of model performance, Nash and Sutcliffe, 1970], highlights potential sources of
model bias and error and indicates the magnitude of those errors relative to the various potential
sources of variability and uncertainty in the model forecast.
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APPENDIX A

The IHACRES model derives effective rainfall uk (in mm) at time k from incident rainfall rk (in
mm) through a unitless catchment wetness index sk as follows [Jakeman et al., 1990]:

uk = rksk

sk = crk +

(
1− 1

τw(Tk)

)
sk−1; s0 = 0 and (ideally) 0 < sk < 1

τw(Tk) = τw exp {(R− Tk)f}

where,
c = volume-forcing constant (1/mm)

τw(Tk) = mean soil storage residence time at temperature Tk (unitless)
Tk = mean daily temperature (deg C)
τw = catchment drying time constant at reference temperature R
R = reference temperature = 20 (deg C)
f = temperature modulation factor (1/deg C)

Streamflow xk at time k is then calculated from effective rainfall uk through recursive application
of the following [Young, 2003]:

xk = αxk−1 + βuk

where α and β are model coefficients such that β = 1− α and τf = 1
− lnα .


