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regional water balance modeling
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[1] One approach to regional water balance modeling is to constrain rainfall-runoff models
with a synthetic regionalized hydrologic response. For example, the Large Basin Runoff
Model (LBRM), a cornerstone of hydrologic forecasting in the Laurentian Great Lakes
basin, was calibrated to a synthetic discharge record resulting from a drainage area ratio
method (ARM) for extrapolating beyond gaged areas. A challenge of such approaches is the
declining availability of observations for development of synthetic records. To advance
efficient use of the declining gage network in the context of regional water balance
modeling, we present results from an assessment of ARM. All possible combinations of
“most-downstream” gages were used to simulate runoff at the gaged outlet of Michigan’s
Clinton River watershed in order to determine the influence of gages’ drainage area and
other physical characteristics on model skill. For nearly all gage combinations, ARM
simulations resulted in good model skill. However, the gages’ catchment area relative to
that of the outlet’s catchment is not an unquestionable predictor of model performance.
Results indicate that combinations representing less than 30% of the total catchment area
(less than 10% in some cases) can provide very good discharge simulations, but that
similarity of the gaged catchments’ developed and cultivated area, stream density, and
permeability relative to the outlet’s catchment is also important for successful simulations.
Recognition of thresholds on the relationship between the number of gages and their
relative value in simulating flow over large area provides an opportunity for improving

historical records for regional hydrologic modeling.
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1. Introduction

[2] Over the past two decades, several approaches for
simulating flow over partially gaged regions have emerged,
driven in large part by the Prediction in Ungaged Basins
(PUB) Initiative [Sivapalan et al., 2003]. This large and
growing body of research aims to reduce the uncertainty of
hydrologic prediction in partially or totally ungaged basins
by employing knowledge of relationships between hydro-
logic function and physical characteristics of gaged basins.

[3] Approaches for predicting flow in ungaged basins have
traditionally been to (1) calibrate the chosen rainfall-runoff
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model in basins where observations are available and develop
regression equations for parameter estimation at ungaged
locations, (2) estimate model parameters using only physical
watershed characteristics, or (3) transfer complete parameter
sets from other hydrologically similar watersheds [Wagener
and Montanari, 2011]. An additional emerging approach has
been identified by Wagener and Montanari [2011] as one
which mimics calibration in ungaged basins by quantifying
expected hydrologic signatures that can be assimilated into
any hydrologic model to inform a calibration process. Some
examples of hydrologic signatures that can be used for
regionalization include magnitudes of high, low and average
flows [e.g., Yadav et al., 2007], runoff ratio (fraction of rain-
fall which becomes runoff) [e.g., Carrillo et al., 2011;
Sawicz et al., 2011; Singh et al., 2011; Yadav et al., 2007;
Zhang et al., 2008], slope of the flow duration curve [e.g.,
Carrillo et al., 2011; Sawicz et al., 2011; Yadav et al., 2007 ;
Zhang et al., 2008], and base-flow index [e.g., Bulygina
et al., 2009; Carrillo et al., 2011; Sawicz et al., 2011; Singh
et al., 2011]. Streamflow volume itself, in fact, can be consid-
ered a hydrologic signature [e.g., Yadav et al., 2007].

[4] Interestingly, the method employed by the National
Oceanic and Atmospheric Administration’s Great Lakes
Environmental Research Laboratory (GLERL) to forecast
runoff to the Great Lakes nearly 25 years ago (and still
used today) is similar to the seemingly novel approach of
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conditioning a rainfall-runoff model on a synthetic hydro-
logic response probability distribution for ungaged basins.
The Large Basin Runoff Model (LBRM) is a lumped pa-
rameter conceptual model that is used as the principal
hydrological model in a variety of research-based and
operational forecasting frameworks, ranging from the Great
Lakes Advanced Hydrologic Prediction System (AHPS)
[Gronewold et al., 2011] to the Huron-Erie Connecting
Waterways Forecasting System (HECWFS) [A4nderson
et al., 2010]. LBRM, which has nine calibrated parameters,
is the only conceptual rainfall-runoff model to be system-
atically applied to the entire Great Lakes basin [Coon et al.,
2011]. These nine parameters are historically conditioned
on a synthetic discharge time series derived from a simple
drainage area ratio method (ARM) that extrapolates dis-
charge from gaged portions of each Great Lakes subbasin
to the downstream ungaged portions of the subbasins
(equation (1)),

Ay
o-a(t)

where O, is the streamflow estimated for the ungaged area,
0, is the observed flow in the gaged area, 4,, is the ungaged
area, and A4, is the gaged area.

[s] While more complex and modern models have been
developed to simulate and forecast runoff over large portions
of the basin [see Coon et al., 2011], more large-scale runoff
modeling is done for individual subbasins or portions of the
basin that are entirely on one side of the international border
[e.g., Holtschlag, 2009; Mao and Cherkauer, 2009; Robert-
son and Saad, 2011] as a result of transborder data coordina-
tion issues. In addition to the LBRM (forecasts) and GLERL
ARM (simulated historical records) runoff estimates, Envi-
ronment Canada uses its Modélisation Environmentale Com-
munautaire-Surface Hydrology (MESH) model [Pietroniro
et al., 2007], a distributed model combining land surface
models with land surface parameterization and hydrologic
routing, to forecast runoff to the lakes from both the U.S.
and Canadian portions of the basin. The ARM, however, to
the best of our knowledge, provides the longest simulation
of historical record incorporating daily observations of dis-
charge over the entire Great Lakes basin.

[6] The ARM, as it is used by GLERL, is a two-step pro-
cess that operates on 121 subbasins in the Great Lakes ba-
sin [Croley and Hartmann, 1986; Croley and He, 2002].
The first step is to apply the ARM in partially gaged subba-
sins (on each day), and the second step is to extrapolate
from these partially gaged subbasins to totally ungaged
basins by applying ARM a second time. Any gage provid-
ing observations on a given day could potentially contribute
to the model if there are no additional gages downstream.
Depending on the operational status of the gages used in the
GLERL ARM calculations, the daily gaged portion of the
Great Lakes basin ranged from about 62% to 70% between
1960 and 2008 with an overall decline in gaged area since
the 1980s, as shown in Figure 1. In very recent years, this
gaged portion is likely increasing somewhat, however, as
some streamgages have been added to major tributaries as
part of the Great Lakes Restoration Initiative. The subbasin
runoff estimates are aggregated and made available online as
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Figure 1. Daily percent of the Great Lakes basin that

gaged. Percent gage was estimated from GLERL’s Great
Lakes Monthly Hydrologic Data, available at http://
www.glerl.noaa.gov.

time series of monthly runoff to each of the Great Lakes
with GLERL’s Great Lakes Monthly Hydrologic Data, and
span the period of 1898-2010 (http://www.glerl.noaa.gov/).

[7] The ability to simulate runoff over the entire Great
Lakes basin (U.S. and Canadian sides) by incorporating all
available discharge observations is a significant achievement
of the GLERL ARM, because complete spatial coverage of
runoff estimates from land is critical for understanding and
predicting lake level changes. Incorporation of stream gage
data may reduce uncertainty by providing observations
wherever possible. The simplicity of ARM data require-
ments in intermittently gaged basins (available daily stream-
gage discharge and contributing area) has remained an
advantage in this international basin.

[8] While in the remainder of this article, we use
“ARM?” to describe the general approach of extrapolation
of discharge from gaged to ungaged areas by multiplying
the ratio of ungaged to gaged area by the gaged discharge
(as in equation (1)), the preceding description of GLERL’s
employment of ARM provides an important contextual
background for the significance of this research. Although
there have been considerable research investments and
advancements in modeling software (for example Hydro-
mad; Andrews et al. [2011]), computational power [Beven,
2007; Wood et al., 2011], rainfall-runoff modeling incorpo-
rating state-of-the-art GIS-based terrain and land use analy-
sis [Grimaldi et al., 2010; Noto and La Loggia, 2007], and
approaches to acknowledging and quantifying uncertainty
in recent decades (e.g., GLUE; Beven and Freer [2001],
Parameter ESTimation Software (PEST); Doherty and
Johnston [2003], and DREAM; Vrugt and Ter Braak
[2011]), estimation of runoff in ungaged basins remains
one of the most pressing challenges to the hydrological sci-
ence community. This is exemplified by the continued reli-
ance on the simple ARM estimator. Implicit in these ARM-
derived synthetic runoff time series are two important and
potentially problematic assumptions: (1) homogeneity of
hydrologic response across an entire partially gaged basin,
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and (2) homogeneity of precipitation across the same area.
However, no systematic evaluation of these assumptions or
the effectiveness of ARM for simulating historical runoff
from the subbasins has been applied to date.

[9] Previous research has resulted in various recommen-
dations for implementation of ARM simulations. For exam-
ple, Hortness [2006] cites several recommendations for
suitable drainage area ratios ranging from a wide interval of
0.3—1.5 to a narrow interval of 0.85—1.15, ultimately recom-
mending that a suitable area ratio should be between 0.5 and
1.5. Emerson et al. [2005] evaluated the drainage area ratio
method for simulating runoff in the Red River of the North
Basin in North Dakota and Minnesota and found that the
gaged drainage area was the only significant variable con-
tributing to model skill. However, more recently, Archfield
and Vogel [2010] found that ARM simulations in gaged
areas could be improved by selecting the nearest donor
gages with highest correlation in streamflow series, leading
to a “map-correlation” method in which a correlation coeffi-
cient (to existing gages’ time series) at an ungaged location
is determined via kriging to spatially interpolate correlation
coefficients between gages. Juckem et al. [2012] evaluated
an adjusted area ratio method, in which they developed a
regression relating the observed ratio of discharge to water-
shed area at short-term gaging stations to the water yield
from nearby long-term gaging stations in order to extend the
flow records of the short-term stations, and found that the
adjusted area ratio method resulted in smaller residuals than
simulations produced by a water balance model.

[10] The increasing number and variety of approaches to
simulating and forecasting runoff over large spatial
domains collectively underscore the importance of continu-
ally assessing the relationship between model complexity
and predictive skill [Beven, 2007; Doherty, 2011]. How-
ever, complex and novel approaches to simulating and pre-
dicting flows in ungaged basins are often applied across a
broad range of problems, with an implicit degree of confi-
dence that is disproportionately greater than the time
invested in assessing and communicating model skill [e.g.,
Deacu et al., 2012; Lofgren, 2004]. To help close the gap
between research-oriented and “real-world” hydrological
modeling, we provide a critical assessment of an empirical
runoff model (ARM) that, despite its simplicity, has served
as a basis for operational hydrological modeling and fore-
casting in the Great Lakes for the past 30 years.

[11] This assessment is motivated in part by recommen-
dations from the 2011 Workshop on Improving Hydrologi-
cal Modeling Predictions in the Great Lakes, including (1)
improving runoff predictions for the entire Great Lakes ba-
sin, starting with hindcast mode, assimilating streamflow
observations; (2) assembling lake ice area and thickness
data; (3) improving the representation of the lakes’ thermo-
cline structure; and (4) improving flow projections from
Lake Ontario for propagating into hydrodynamic models
linking the St. Lawrence River with the Gulf of St. Law-
rence [Gronewold and Fortin, 2012]. Accordingly, one
objective of this assessment is to assess ARM for continued
use in providing a synthetic record of historical runoff to
the Great Lakes. Beyond Great Lakes hydrological model-
ing, a second objective is to use this assessment as a basis
for gaining insight not only into the relationship between
model skill and complexity but also between the model

skill and both the quantity and relative value of empirical
evidence and answer the compelling question, “how many
and which gages are needed to characterize the hydrologi-
cal response of a particular area?” This question is particu-
larly relevant in recent decades when the network of
gaging stations has been declining (see Figure 1 for an
example in the Great Lakes basin), despite the continuing
need to simulate and forecast streamflow and water budgets
over regions with large ungaged areas. The analysis pre-
sented here builds on previous research by investigating the
value of individual gages for extrapolation to downstream
areas using ARM simulations, and relating model skill to
catchment similarity, presenting an opportunity for further
improving ARM simulations by selecting appropriate
gages. The analysis represents a novel approach to deter-
mining thresholds on the relationship between number of
observations and their relative value for regional hydrologi-
cal modeling. While the Clinton River watershed in Michi-
gan provides the test bed for this research, the methods
developed can be applied to the remaining subbasins of the
Great Lakes and any region where extrapolation beyond
gaged areas is necessary. The evaluation of gages for use in
extrapolation to ungaged areas is a significant contribution
in the context of U.S. water resources management, as the
need for simulation over large regions is explicitly or im-
plicitly stated in three of the five federal needs forming the
basis of the USGS National Streamflow Information Pro-
gram (described online at http://water.usgs.gov/nsip/feder
alneeds.html and shown in Table 1).

2. Data and Methods

2.1.

[12] This analysis evaluates ARM for simulating histori-
cal runoff from one Great Lakes subbasin: the Clinton
River watershed. The Clinton River watershed is a subbasin
of the Lake Saint Clair basin (Figure 2). The Clinton River
watershed contains 11 streamgages in the United States
Geological Survey (USGS) GAGESII database (available
online at http://waterdata.usgs.gov/) that have operated
nearly continuously in the recent period, and therefore
offers opportunities for cross validation and investigation
of the impact of varying gage operation on model fit. The
watershed is diverse in land use, with planted, forested, and
developed areas (Table 2). Nearly complete time series of
daily mean discharge for each gage are available from the

Location and Data Sources

Table 1. Five Federal Needs Determining the Locations of the
USGS “Backbone” Network of Gages in Its National Streamflow
Information Program (NSIP)*

Meeting interstate and international
legal and treaty obligations

Forecasting streamflow

Measuring river basin outflows

Monitoring sentinal watersheds to determine
long-term trends across the country

Measuring flow to support the USGS water
quality networks

Starred goals are met in part by incorporation of gage data into regional
scale hydrological modeling. These goals are described online at http://
water.usgs.gov/nsip/federalneeds.html.
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Figure 2. Location of the Clinton River watershed within the Great Lakes Basin.

USGS for the period of analysis 1950-2009 (available
online at http://waterdata.usgs.gov/).

2.2. Determination of the Impact of Gaged Area on
Model Skill

[13] ARM allows for use of any operational gage on a
given day, and therefore the skill of the model likely varies
due to the portion of the basin that is gaged on a given day.
To evaluate the impact of gage operation on model skill for
an intermittently gaged area, ARM estimates at the Cinton
River’s most-downstream gage (at gage 04165500) were
produced for every possible combination of operating
gages. For the 11 selected streamgages in the Clinton River
Watershed, there are 2047 possible scenarios of streamgage
operation for this network, considering all networks of size
1-11. These streamgage combinations were evaluated to
determine the most downstream gages in each combination,
and unique most-downstream gage combinations were kept
for analysis. For example, in a hypothetical three-station
network of streamgages [1,2,3], in which streamgage 3 is
the most downstream, there are three two-station combina-
tions [1,2],[1,3],[2,3], for which only [1,2], and [1,3] OR
[2,3] would be considered because streamgage 3 appears as
the most downstream gage in two of the combinations.
Applying this process to the Clinton River leaves 185 pos-
sible gage combinations (including outlet gage 04165500).
ARM-modeled discharge at the outlet (gage 04165500)
was estimated for each of the 185 combinations for each
day during the period of water years 1950-2009.

[14] In addition to evaluating residuals between modeled
and observed discharge, we evaluated a series of skill met-
rics for ARM simulations at simulating discharge at gage
04165500, including Nash-Sutcliffe efficiency (NSE) (equa-
tion (2)), Percent Bias (PBIAS) (equation (3)), and RMSE
observations standard deviation ratio (RSR) (equation (4))

for daily and monthly simulations resulting from each com-
bination of operating gages using R package hydroGOF
[Zambrano-Bigiarini, 2011]. Moriasi et al. [2007] recom-
mend these three goodness-of-fit statistics for inclusion in
calibration and validation of hydrological models. Although
¥ (the squared Pearson’s correlation coefficient) (equation
(5)) is often used for evaluating model skill, Moriasi et al.
[2007] do not recommend including 7 because it is overly
sensitive to large outliers and under-sensitive to additive and
proportional differences between observations and predic-
tions. NSE is a measure of the noise in residuals compared to
the data variation, and indicates how well a plot of observed
versus simulated discharge fits a 1:1 line. PBIAS is a mea-
sure of the average tendency of modeled data to be larger or
smaller than the observations and is appropriate for quantify-
ing water balance errors because of its similarity to percent
deviation of streamflow volume. RSR is a standardized ver-
sion of the RMSE, which combines both an error index and
the standard deviation of the observed data, which is recom-
mended by Legates and McCabe [1999] and Moriasi et al.
[2007]. In equations (2)—~(5), O; is the observed value, P; is
the simulated value, and »n is the number of simulations.
Goodness-of-fit statistics were calculated for log-transformed
simulated and observed discharge values.

n

> (0 =P

NSE =1 -, @)
> (0, -0)
i=1
> (0i = P;) x 100
PBIAS = =! , 3)

>0
i—1
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S
Ao=xonxanan [15] To evaluate the contribution of each gage to model
T B T 90 00 00 90 00 00 60 20 skill, we evaluated goodness-of-fit statistics and plots of
modeled versus observed discharge for the 11 simulations
of daily discharge resulting from inclusion of only one
gage. Additionally, we explored the relationships between
goodness-of-fit statistics and the selected watershed charac-
E ; ; ; ; § g ; = ; ; teristics (Table 2) using a dissimilarity measure. An overall
measure of dissimilarity between the gaged area, @, and the
outlet gage’s total drainage area, b, was estimated, follow-
ing Kay et al. [2007], as the Euclidean distance in the
LT TS catchment property space with the catchment properties
AFILES LR AR normalized by their standard deviations (equation (6)).
Additionally, we investigated the importance of each catch-
ment characteristic by evaluating the term contained within
=P P the parentheses in equation (6) for each characteristic.
N e A R
(6)
R b A
OownN <t N —~<F — OO
[16] In equation (6), j is one of J catchment characteris-
tics, X, ; is the value of that catchment characteristic for the
ath gage combination’s catchment area, X, ; is the value of
<t N OO NN s ’ 3
CZZZZSZZZZZcs that chargctenstw for the oytl;t gage’s total drainage area,
S and oy is the standard deviation of that catchment charac-
& teristic across the entire set of gage combinations’ drainage
& areas.
F
ceoagrw—o—no| B
SOVt ANV N —— <t § 3. Results
= 3.1. Overall ARM Skill
% [17] Boxplots showing NSE, PBIAS, and RSR for simu-
nowawon——0o| o lations of discharge at 04165500 resulting from all poten-
ﬁﬁﬁﬁﬁ AR I < tial most-downstream gage combinations are shown in
; & Figure 3. Both monthly and daily simulations perform rea-
2 éﬂ sonably well for most combinations of most-downstream
s gages. Of the 185 possible combinations, 143 (136) of the
050N eRe2RAT | 'g ) combinations resulted in at least satisfactory daily
5 E % (monthly) NSE values (0.50 <NSE < 1.00), 81 (83) of
54 which rated very good (0.75 < NSE < 1.00). Likewise, 145
2 g‘% (137) combinations resulted in at least satisfactory daily
852 (monthly) RSR values (0.00 < RSR < 0.70), 85 (86) of
0383 ES Fuom S 3 2 _%; = which rated very good (0.00 < RSR < 0.50). While nearly
- |l gw8 all combinations result in negative bias, the bias is within
& E@ the recommended range for percent bias (PBIAS <25%)
coccococoooooab é 5 for nearly all combinations’ simulated daily and monthly
T RIIIESSI2R2|FT LY discharge. In fact, 120 (110) combinations resulted in very
BT3B IIILL | <55 good PBIAS values (PBIAS < *10). Although undocu-
PR Ae = GP= = A== gp= = = mented, flow augmentation is known to occur in the
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Figure 3. Nash-Sutcliffe Efficiency coefficient (NSE), Percent Bias (PBIAS), and RMSE observations
standard deviation ratio (RSR) resulting from all potential combinations of most-downstream gages in
the Clinton River basin. ARM output was compared with observed discharge at gage 04165500 at
monthly and daily time steps. Plot backgrounds are colored by performance ratings recommended by
Moriasi et al. [2007]. Note that one outlier is not shown. This outlier is produced by daily and monthly
simulations using only gage 04164300. Goodness-of-fit statistics for the daily and monthly simulations
produced by this gage are NSE =—6.03, PBIAS =—71.9%, RSR=2.65 and —6.17, —52.3%, 2.68,

respectively.

Clinton River due to effluent from wastewater treatment
plants that divert water from the Detroit River, perhaps
explaining some underestimation of ARM-simulated dis-
charge at the outlet.

3.2. Influence of Area Ratio on ARM SKkill

[18] As the fraction of the watershed that is gaged
increases from zero to almost 0.3, the model skill appears
to improve as certain gages are added into the most-down-
stream gage combinations, evident by increasing NSE,
reduced absolute PBIAS, and reduced RSR (Figure 4).
However, some gage combinations with very small catch-
ment areas (even less than 10% of the outlet gage’s catch-
ment area) do result in very good model skill, with NSE
near one, absolute PBIAS less than 10%, and RSR less than
0.5. An obvious reduction in skill occurs when the gaged
fraction reaches about 0.3, evident by a sudden dramatic
decrease in NSE, increase in absolute bias, and increase in
RSR in Figure 4. This sudden reduction in skill occurs
simultaneously with the addition of gage 04164500 into the
combinations of most-downstream gages, suggesting that
although the catchment area of gage 04164500 is large, the
catchment’s hydrologic response is not representative of
the outlet’s catchment. Beyond about 60% gaged, the addi-
tion of gage 04164000 into further combinations results in
much improved simulations, with NSE approaching 1.0,
average percent bias less than =10%, and RSR less than
0.5 for daily and monthly simulations resulting from all
combinations including gage 04164000. These results sug-
gest that increasing the proportion of the outlet catchment
that is gaged does not always improve ARM simulations
and the success of a gage combination at simulating dis-
charge at the outlet is related to more than just the fraction
of the outlet’s catchment that gages’ catchments represents.
Figure 4 also demonstrates the effect of temporal aggrega-
tion (daily vs. aggregated monthly) on model skill. While

the NSE, PBIAS, and RSR statistics do not necessarily sug-
gest differing performance at different time steps, the simu-
lations of monthly discharge resulted in a notable reduction
in the magnitude of residuals as a result of temporal
aggregation.

3.3. Contribution of Individual Gages to ARM SKkill

[19] To investigate the contribution of each individual
gage to model skill and assess the assumption of spatial ho-
mogeneity of hydrologic response, we show log-log plots
of modeled versus observed daily discharge at each gage
when discharge is simulated using only one gage and find
that hydrologic response is not homogeneous across the
outlet’s catchment (Figure 5). When considered individu-
ally, it is clear that gage 04164000 provides the best simu-
lation of discharge at gage 04165500. Several gages stand
out as problematic for simulating discharge at 04165500.
Among these are 04163400, with negative NSE, 04164500
with large negative bias and negative NSE, 04160800 with
large negative bias and low NSE, 04161580 with low NSE,
and 04164300 with very large negative bias and very large
negative NSE. These gages have catchments that are, for
the most part, small relative to that of the outlet gage
04165500, especially 04163400, 04160800, 04161580, and
04164300 (all less than 5% gaged). However, gage
04164500 is a notable exception, with its catchment repre-
senting almost 30% of the total watershed area, and other
gages with much smaller catchment areas have consider-
ably better goodness-of-fit statistics (e.g., 04161800 and
04164100, whose catchment areas each represent less than
10% of that of the outlet gage).

3.4. Other Factors Influencing ARM SKkill

[20] Inspection of the log-log plots of modeled versus
observed discharge in relation to the gages’ delineated
catchments (Figure 5) provides some indication of
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Figure 4. Nash-Sutcliffe Efficiency coefficient (NSE), Percent Bias (PBIAS), RMSE observations
standard deviation ratio (RSR), and residuals versus the fraction of the basin that is gaged for all possible
combinations of most-downstream gages for monthly and daily discharge simulations. Note that one out-
lier is not shown. This outlier is produced by daily and monthly simulations using only gage 04164300.
Goodness-of-fit statistics for the daily and monthly simulations produced by this gage are NSE = —6.03,
PBIAS = —71.9%, RSR =2.65 and NSE = —6.17, PBIAS = —52.3%, RSR =2.68, respectively.

underlying factors complicating the relationship between
gaged area and model skill. For example, while the catch-
ment area of gage 04164500 represents nearly 30% of the
total watershed area, when it is used alone to simulate dis-
charge at the outlet, it is among the poorest performers,
both in terms of uncertainty (spread of the residuals) and
goodness-of-fit statistics. A closer look at the catchment
characteristics reveals that, while the catchment area of
gage 04164500 is large, it is quite different from that of
outlet gage 04165500 (Figure 5). For example, the catch-
ment contains the largest portion of cultivated land (55%,
compared to 20% for the outlet gage’s catchment). Con-
versely, the relatively small catchment of gage 04161540
(10% of the outlet gage’s catchment) is somewhat repre-
sentative of the watershed of the outlet, with cultivated
land making up 14%, developed land comprising 42%, and
a comparable average permeability (5.6 in/h compared
with 4 in/h for the outlet gage’s catchment). Consequently,
model skill of gage 04161540 is good, despite its small
size. Additionally, the plots of modeled versus observed
discharge in Figure 5 also confirm findings by Archfield
and Vogel [2010] that distance between gages does not
serve as a proxy for correlation of streamflow.

[21] Goodness-of-fit statistics are plotted against a mea-
sure of dissimilarity of the gaged catchments to the outlet
gage’s catchment area for the simulations resulting from
each combination of most-downstream gage in order to

evaluate the impact of similarity of catchment characteris-
tics on model skill (Figure 6). Dissimilarity is shown for
each physical characteristic considered, as well as an over-
all dissimilarity measure. In Figure 6, the horizontal red
lines represent a perfect goodness-of-fit value, and the ver-
tical blue lines are drawn where the gaged catchment char-
acteristics are exactly the same as those of the outlet gage’s
catchment (the red circle is drawn around the point result-
ing from the simulation using gage 04165500). We found
that each of these characteristics appears to be somewhat
related to model skill and that similarity in cultivated area,
developed area, stream density, and permeability appears
particularly important for ARM skill (Figure 6).

4. Discussion

[22] In this analysis, we not only identify some key driv-
ers of hydrologic response within the Clinton River water-
shed but also show that runoff for a moderately sized basin
can be estimated from a small network of gages covering
less than 20%-30% of the watershed, and that additional
information from gages whose catchment area characteris-
tics are dissimilar to those of the outlet’s total catchment
area may, in fact actually reduce model skill. This finding
provides important insights into the rationale behind cur-
rent ensemble modeling techniques, many of which implic-
itly assume that any additional information has value, but
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Figure 5. Goodness-of-fit statistics and log-log plots of modeled discharge versus observed daily dis-
charge at gage 04165500 when only one gage is operating. Land cover data are from the National Land

Cover Dataset [Fry et al., 2011].

that the value may be weighted based on catchment dissim-
ilarity [e.g., Reichl et al., 2009]. This analysis shows that,
in the case of large scale water budget estimation, adding
information from some gages, even when weighted appro-
priately, may result in diminished model skill if the addi-
tional gages’ catchment characteristics do not adequately
represent the outlet’s catchment.

[23] While an in-depth assessment of the contribution of
each characteristic to model skill is outside the scope of
this analysis, the similarity of the gaged area to the outlet
gage’s catchment is clearly an important consideration in
selection of gages for inclusion in an ARM simulation. In
particular, it appears that gages whose catchments are char-
acterized by similar cultivated area, developed area, stream
density, and permeability are likely to perform much better.
Application of state-of-the-art GIS analysis and remote
sensing may offer opportunities for selecting gages whose
catchment areas are most similar in land use, morphology,
and underlying hydrogeological characteristics.

[24] Note also that differences in runoff generation mech-
anisms likely contribute to differing model skill, and that
many of the catchment characteristics in Figure 6 are factors

determining whether runoff is generated via infiltration
excess (i.e., Hortonian runoff) or saturation excess (i.e.,
Dunne runoff). If, as concurrent work [Shen et al., 2013] has
found, catchments of some gages are dominated by satura-
tion excess, then the spatial extent of the area contributing to
runoff is not the total subwatershed area but the areas adja-
cent to streams participating in saturation excess at any
instant of time.

[25] It is also important to note that the groundwater
shed cannot necessarily be considered to be equivalent to
the surface watershed [e.g., Hunt et al., 1998], and this may
be one explanation for poor model skill in some smaller
watersheds. For example, the considerable underestimation
of low flow when gage 04164300 is used to simulate dis-
charge (see Figure 5) is likely due to a smaller proportional
contribution of base flow in the hydrograph of 04164300.
The under-representation of low flows (and likewise the
overrepresentation of high flows) at 04164300 may also
result from its different land use (76% cultivated). Simi-
larly, the underestimation of low flows at gage 04163400
may be due to misrepresentation of base-flow characteris-
tics resulting from its small size, as well as local impacts of
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urbanization (92% developed), which include decreasing
low flows [Martin et al., 2012].

[26] Figures 5 and 6 demonstrate an inherent problem
with extrapolation approaches to regionalization: for many
physical characteristics, very few gage combinations’ catch-
ment areas are representative of the outlet gage’s catchment
area. For example, in the Clinton River watershed 169 of the
185 gage combinations’ catchment areas have a lower frac-
tion of developed area than the developed fraction of the out-
let gage’s catchment. In the Great Lakes basin, the largest
urban areas are near the coasts, including Chicago, Toronto,
Detroit, Montreal, Cleveland, Milwaukee, Buffalo, and
Rochester. This is likely generally true worldwide, consider-
ing the challenges of monitoring coastal stream segments
and the fact that 72% of the world’s largest cities are located

on or near the coast [United Nations Department of Eco-
nomic and Social Affairs, 2012]. The heterogeneity in devel-
oped area may be especially important, as research has
shown consistent impacts of urbanization across streamflow
metrics including peak flows, low flows, flow durations, and
flow variability [Martin et al., 2012]. The identification of
spatial heterogeneity of urban area, as well as other physical
characteristics determining ARM skill, facilitated by remote
sensing and GIS-based terrain analysis, may allow for
improvement of ARM simulation results, allowing for the
selection of more appropriate gages to be included for
extrapolating beyond intermittently gaged areas.

[27] In consideration of literature describing drivers of
hydrologic response [e.g., Jencso and McGlynn, 2011 ; Nipp-
gen et al., 2011; Sawicz et al., 2011; Wagener et al., 2007;
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Wagener and Montanari, 2011], the influence of watershed
characteristics on the ability of each gage to simulate flow at
the outlet is not surprising. The significance in the analysis
described here is in the potential for describing model skill
and uncertainty of the area ratio method for simulating run-
off in intermittently gaged basins using only catchment area
and available discharge observations. Additionally, the anal-
ysis provides insight into selection of gages that should be
prioritized for estimating discharge from coastal watersheds.
For example, although gage 04164500 is likely important
for other hydrologic analyses, the inclusion of this gage
within ARM simulations actually worsens the overall model
skill in some cases, because its catchment is physically dif-
ferent from the outlet’s catchment (Table 2). While the com-
bination of 04164500 and 04164000 does provide the best
simulation of discharge, the addition of 04164500 offers
only marginal improvement over 04164000, and in simula-
tions not including 04164000, the inclusion of 04164500
actually reduces model skill and increases the uncertainty.
The ability to select gages contributing to the best ARM dis-
charge estimates could enhance ARM simulations, which is
an attractive approach for simulating historical runoff for
application to large-scale water balance modeling because of
its minimal data requirements (complete or incomplete daily
discharge records at gages and gage catchment area) and
simple computational methods.

[28] This analysis provides insight into model skill and
uncertainty of ARM within intermittently gaged areas.
While we recognize that this does not fully describe ARM
skill in always ungaged areas, it provides an important step
in improving our understanding of the appropriateness of
using ARM for simulating discharge in water balance stud-
ies. In the Lake Michigan basin, for example, the intermit-
tently gaged portion represents nearly 80% of the total
basin area, so enhancing our understanding of ARM skill in
the intermittently gaged portions is a significant advance-
ment for estimating discharge to the Great Lakes. While
the ability of ARM to simulate discharge from the portion
of the basin that is never gaged remains unclear, insight
from the research investigating relationships between
watershed characteristics and hydrologic response may
contribute to a new, combined approach to estimate total
flow from partially gaged basins, with ARM providing esti-
mates for intermittently gaged portions, and a form of
regionalization contributing estimates in totally ungaged
portions.

[29] The decline in gaged portion of the Great Lakes
basin in the last decade (Figure 1) is an example of the per-
vasive problem of a declining gage network. In fact,
Mishra and Coulibaly [2010] found that a large part of the
Canadian portion of the basin can be classified as either
“deficit” or “highly deficit” in their stream gage networks.
The recent downward trend in gaged area is especially trou-
bling, considering concurrent dramatic changes in the Great
Lakes water budget, evidenced by changing water levels.
For example, Lake Erie experienced an unprecedented shift
in seasonal water level cycles during water year 2012, with
the second highest increase in runoff during November and
December (0.2 m, occurring also in 1927) followed by the
longest period of decreasing water levels during the spring
runoff period, which would normally coincide with rising
water levels (A. D. Gronewold and C. A. Stow, Unprece-
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dented seasonal water level dynamics on one of the earths
largest lakes, submitted to Bulletin of the American Meteor-
ological Society, 2012). In light of the need for both maxi-
mizing the beneficial use of existing gage observations and
planning for inclusion of new gage information into efforts
to understand the water budget of the Great Lakes, analyses
similar to that performed on the Clinton River should be
carried out across all intermittently gaged Great Lakes
subbasins.

[30] Results of this analysis provide an opportunity for de-
velopment of a protocol for selecting gages to include in
ARM simulations of runoff to the Great Lakes. In GLERL’s
current implementation of ARM, the protocol would be as
follows. If gage 04165500 is operating, it provides the
“most-downstream” observation of discharge to Lake St.
Clair. If gage 04165500 is offline, however, then gage
04164000 and 04164500 provide the most-downstream
observations if they are operational. If in the case that
04165500 and 04164000 are both offline, then ARM would
select gages 04163400, 04160900, 04161540, 04161800,
and 04164500 if they are all operational (59% of the outlet’s
catchment area). Our analysis shows, however, that this five-
gage combination actually performs worse (NSE = 0.67,
PBIAS = —12%, RSR = 0.57) than the four-gage combina-
tion including all of those gages except gage 04164500
(32% of the outlet’s catchment area) (NSE = 0.81, PBIAS
3%, RSR = 0.44), and that this reduction in perform-
ance is likely due to the dissimilarity in catchment character-
istics. An improved protocol, informed by the analysis
presented here, would therefore not necessarily choose all
next-most-downstream gages if gage 04165500 is offline,
but instead select the next available most-downstream gage
combination providing the best model skill, i.e., 04163400,
04160900, 0416540, and 04161800. If this analysis is carried
out on all Great Lakes subbasins, modern computing power
would allow for the selection of the best gage combination
for each Great Lakes subbasin on a given day, with implica-
tions for both improving our estimates of historical runoff
and providing a basis for recalibration of the LBRM (and
potentially other rainfall-runoff models).

5. Conclusions

[31] ARM is a simple method for extrapolating to
ungaged areas to create synthetic time series of historical
runoff. Although no catchment characteristics are considered
for the implementation of ARM, the method performs rea-
sonably well for simulating outflow from the Clinton River
watershed, based on evaluation of the NSE, PBIAS, and
RSR resulting from simulations involving 185 different
combinations of gages. While most combinations performed
at least satisfactorily based on these measures, it was clear
that some combinations of gages performed better than
others, and the inclusion of some gages into certain gage
combinations actually had the effect of reducing model skill,
owing to dissimilarity in their catchment characteristics
compared with those of the outlet. By eliminating “bad”
gages from the group of available gages from which to draw
daily observations, ARM estimates can be improved within
intermittently gaged areas. This is somewhat contrary to
weighted ensemble approaches [e.g., Beven and Freer,
2001; Reichl et al., 2009], which do not reflect the
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possibility that additional gage information may in fact
decrease model skill. Weighted ensemble approaches often
employ any gage information available, under the assump-
tion that more information is better, but weigh the relative
value of that information according to some similarity or
skill metric. Here we have provided a clear basis for a differ-
ent perspective acknowledging thresholds on the relationship
between the number of gages and their relative value in sup-
porting flow estimates over large areas. Mcintyre et al.
[2005] present an approach that accommodates such thresh-
olds; they build on established Bayesian methods described
by Beven and Freer [2001], by updating prior likelihoods of
a large sample of models based on the similarity of the
gaged catchments to the ungaged catchments, eliminating
donor catchments with a dissimilarity measure above a
threshold value. While our assessment does suggest that
some gages are better than others for the purpose of simulat-
ing flow to the Great Lakes, we are not advocating the elimi-
nation of gages, but instead presenting an analysis that
allows for making the best use of available data in a time
when available observations are becoming more scarce.

[32] Model skill did appear to be somewhat related to the
simulations’ fraction of gaged area. However, a noncontin-
uous relationship between model skill and gaged area sug-
gested that additional catchment characteristics are
important. Accordingly, the generalized assumption of spa-
tial homogeneity in hydrologic response, while serving as a
computationally efficient basis for Great Lakes regional ba-
sin-scale hydrological modeling for the past several deca-
des, may not be particularly suitable for simulating flows in
relatively small basins. We also find, however, that this
same type of simple, rainfall-independent approach that
relies exclusively on gage data can provide insight into pat-
terns of spatial heterogeneity of hydrologic response and
serve as a basis for both improving flow estimates in
ungaged basins and for calibrating predictive runoff models.
Exploration of the patterns of heterogeneity of hydrologic
response with heterogeneity of catchment characteristics
related to land cover, soils, morphology, and climate adds to
the body of research confirming that catchment similarity
influences the ability to simulate flow in ungaged basins
[e.g., Kay et al., 2007; Mclntyre et al., 2005; Reichl et al.,
2009; Wagener et al., 2007]. The analysis also demonstrates
that ARM may still offer an efficient means for simulating
flow over ungaged areas, and that the method can be
improved by first eliminating observations from gages that
do not effectively simulate flow at the outlet of the intermit-
tently gaged area. Assessment of the relationships between
ARM skill and catchment dissimilarity may also contribute
to improved estimates of discharge in the totally ungaged
areas by further eliminating inclusion of observations from
gages whose catchment characteristics are not representative
of the combined intermittently gaged and totally ungaged
area of a subbasin (e.g., contributing area of the Clinton
River mouth in our example). Catchment characteristics
derived from remote sensing data and GIS-based terrain
analysis provide opportunities for selecting the most appro-
priate gages for inclusion in ARM simulations.

[33] Our analysis provides the basis for selection of appro-
priate combinations of gages for ARM simulations, which
could have implications for both improving historical runoff
simulations and calibrating rainfall-runoff models over large
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regions. It could be argued that the approach of selecting a
set of gages that provide the best ARM simulations contrasts
with recommendations that model parameters be linked to
landscape attributes to simulate effects of future changes in
those attributes. While we acknowledge the potential value of
physically based models which are linked directly to land-
scape attributes, we also recognize that many rainfall-runoff
model applications span time scales in which these types of
changes are unlikely to have an impact (i.e., hours, days, and
months). Certainly, over large time scales, these changes are
likely to be important [Milly et al., 2008], and considerable
research is being invested in understanding the importance of
these changes. In future research, and as part of the ongoing
binational Great Lakes Runoff Intercomparison Project
(GRIP), we will test this assumption over broader spatial and
temporal scales and compare the skill of this simple approach
with other more complex models, including (but not limited
to) Analysis of Flows in Networks of Channels (AFINCH)
[described by Holtschlag, 2009], LBRM, the Sacramento
Soil Moisture Accounting model and Snow-17 models
encoded within National Weather Service’s Community
Hydrologic Prediction System (NWS), and several configura-
tions of MESH. Evaluation of the ARM regionalization
method in a side-by-side comparison with a regionalization
model incorporating physical characteristics of catchments at
a semidistributed level (AFINCH), as well as physically
based lumped conceptual models (e.g., NWS and LBRM)
and distributed models (e.g., MESH) will provide significant
further insight into the value of individual daily discharge
observations for model parameterization and/or assimilation
into large scale water balance modeling efforts.
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