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Executive Summary 

The National Oceanic and Atmospheric Administration’s (NOAA’s) Office of Oceanic and 
Atmospheric Research (OAR) and National Marine Fisheries Service (NMFS) held a joint 
workshop April 13–15, 2015, at NOAA’s Great Lakes Environmental Research Laboratory in 
Ann Arbor, Michigan, to examine methods and means of addressing, reviewing, and presenting 
uncertainty in ecosystem and living marine resource models and assessments. This workshop 
explored the range of practices used within OAR, NMFS, and other organizations in the 
modeling community to deal with uncertainty, developed a set of best practices, and identified 
recommendations to better address model output uncertainty and improve model skill.  
 
A broad range of NOAA’s living marine resource and ecosystem modeling approaches were 
discussed. Examples from these and related disciplines show a healthy and robust gradient of 
models along multiple dimensions of complexity. As such, continued model development 
remains an important research activity and should include evaluations of model uncertainty.  
Best approaches to address uncertainties depend on the type of model and application. In this 
context, the workshop focused on model skill evaluation, noting the need for and feasibility of 
multiple measures. 
 
Participants identified 14 best practices at the workshop that will serve ongoing and future efforts 
to address model uncertainty. A simple “cheat sheet” on matching approaches with specific types 
of uncertainty across model applications was suggested. This could lead to a template of standard 
reporting for living marine resource and ecosystem assessment outputs. The benefits of having a 
common usage of quantitative information to explore model skill would provide the public with 
a more consistent communication of scientific results and management implications. Some of the 
key practices that emerged included the use of multi-model inference, adoption of management 
strategy evaluations, and improved use of communication tools. These formed the basis of eight 
recommendations specific to model efforts. Overall, cross-disciplinary, cross-organizational 
meetings like this to coordinate and advance modeling efforts were considered useful and should 
continue. Next steps recommended are: 
 

1) Seek NOAA leadership support for a full range of quantitative modeling efforts across 
the spectrum of complexity and disciplinary emphasis in support of living marine 
resource management mandates. 

2) Establish routine and regular venues for the NOAA modeling community to meet and 
interact. 

3) Support and advance cross-line-office and cross-disciplinary (including social science) 
coordination on model development. 
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Introduction 

Models of living marine resources (LMRs) and their ecosystems provide a means to integrate 
and synthesize a broad range of temporal and spatial data and provide the foundation for 
resource management decisions. Living marine resource and ecosystem modeling is typically 
performed through assessments that represent the operational implementation of ecosystem 
science. Ecosystem science provides fundamental understanding of marine organisms, their 
habitats, and how they interact with each other—all in a changing environment.  Assessments 
leverage this fundamental science to provide specific advice needed by managers, regulators, and 
the affected public. Given the complexity of marine ecosystems, the performance of relevant 
assessments and models is affected by their inherent uncertainty and skill. 
 
From multiple mandates NMFS is responsible for providing scientifically based management 
advice for approximately 450 managed fish stocks and more than 200 protected and marine 
mammal species, 2,000 habitats, 200 aquaculture permits, and 10 large marine ecosystems. OAR 
provides tools, process studies, and data streams that contribute to these modeling approaches 
and assessments. NOAA’s National Ocean Service (NOS) provides tools and physical and 
ecological models to support safe navigation and coastal zone management. These NOAA line 
offices have a solid history of developing models together. 
 
Models to conduct LMR and ecosystem assessments have inherent uncertainty, as all are based 
on incomplete data and are necessarily simplifications of natural processes at work.  Such 
assessment models are continually being updated and improved in order to provide the best 
scientific advice to inform resource management, and part of this process is to evaluate how 
these models address uncertainty. This workshop was convened to further discuss and explore 
advancements in the characterization, reduction, and communication of uncertainty, with 
particular emphasis on exploring best practices for addressing model uncertainty in an LMR 
context. The deliberations at this workshop capitalized on ongoing interactions among OAR and 
NMFS modeling communities, and were intentionally broadened to include other NOAA line 
offices and partners from other disciplines to ensure salient practices were considered. The 
results reported herein represent state-of-the-art approaches used in addressing uncertainty in 
LMR and ecosystem modeling, identify areas for advancement in addressing model uncertainty, 
and note key recommendations for future modeling efforts. 
 
This report is structured around four workshop terms of reference that guided discussions. An 
additional section on the human dimension of uncertainty, including the perception of 
uncertainty, is also included in this discussion.   
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Terms of Reference 
 

1) Outline and summarize main types of assessment models used for LMR and ecosystem 
assessments. 

2) Characterize, define, and discuss means to address various types of model and assessment 
uncertainty. 

3) Characterize, define, and evaluate model skill.  
4) Capture best practices for addressing uncertainty in modeling and assessment; next steps 

from the workshop. 

Types of models used for living marine resource and ecosystem 
assessments 
 
Representatives from across NOAA and other participating organizations provided a brief primer 
on the types of models used for LMR or ecosystem assessments to help guide workshop 
discussions. These have been catalogued elsewhere (Quinn and Deriso 1999, Cloyd et al. 2007, 
Plaganyi 2007, Shertzer et al. 2008, Townsend et al. 2008, Leonardi et al. 2009, NOAA 2010 
generally; Townsend et al. 2014, Deroba et al. 2015; LMR and ecosystem models specifically) 
and are not repeated here. The presentations demonstrated a robust gradient of models along 
multiple dimensions of complexity (Figure 1).   
 
The workshop discussions noted that these models can be used and applied to a variety of issues. 
For example, in some cases stocks of interest may have very limited data, yet resource managers 
are required to determine annual catch limits as a reference point for determination of 
overfishing status. In such cases various data limited modeling methods could be employed. At 
an intermediate level, nearly 150 of the major fish stocks are managed according to reference 
points and catch limits determined from age-structured demographic models of the harvested 
population. At the other extreme, trade-offs among fishery and protected resources, all under 
different climate change scenarios and given multiple objectives to consider, might require 
evaluation for a management body to prioritize its decisions. In that case some of the more 
comprehensive ecosystem models would be employed as data constraints allow.  Many 
additional examples and applications exist in between these scenarios. 
 
Workshop participants recognized that, although there are appropriate uses of distinct model 
classes for different issues to be modeled (e.g., Townsend et al. 2008), there remains uncertainty 
across all types of models.  For example, some models used for tactical fisheries management 
(e.g., setting stock-wide annual catch limits or quotas) will overlap any spatial dynamics and 
suffer from process uncertainty due to their simplifications. Ecosystem models used for strategic 
advice on management strategies (e.g., exploring options across a range of objectives and 
relevant performance measures) may have multiple functional forms and suffer from structural 
uncertainty. Some types of uncertainty may be more important to consider than others given the 
type of model or application. The various types of modeling uncertainty are further discussed 
later in this report. 
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The degree to which these models provide credible advice for use by the full range of NOAA’s 
partners largely depends on how well the modeling community presents, communicates, and 
addresses the associated uncertainties. 
 

 
Figure 1.  The gradient of modeling approaches used in living marine resource and ecosystem 
assessments. 

Types of and methods for addressing uncertainty 
There are many types and facets of model uncertainty. There have been several attempts to 
classify uncertainty in a living marine resource management context (Hilborn 1987, Morgan and 
Henrion 1990, Ferson and Ginzburg 1996, Francis and Shotton 1997, Anderson 1998, Charles 
1998,  Patterson et al. 2001, Link et al. 2002, Regan et al. 2002, Harwood and Stokes 2003, 
Peterman 2004, Mangel, 2006, Hill et al. 2007a, Townsend et al. 2008, Pine et al. 2009, 
McElhany et al. 2010, Link et al. 2012), which are generally recognized in other fields of 
complex systems modeling (e.g., Hawkins and Sutton 2009, NRC 2012). The uncertainties 
associated with any type of modeling are neither uniform nor insurmountable, but can be broken 
down into subcomponents. The workshop participants generally acknowledged the set of 
uncertainty types from Peterman (2004), as revised in Link et al. (2012; see Figure 2), as a useful 
rubric for the discussion. These include: 
• Natural variability (or process uncertainty). 
• Observation error (or measurement or estimation uncertainty). 
• Structural complexity (or model uncertainty). 
• Communication uncertainty. 
• Objective uncertainty (lack of clarity on goals and objectives; this is often included with 

outcome uncertainty). 
• Outcome uncertainty (or management performance uncertainty).  
 
The workshop participants agreed that, for purposes of discussion, these six types of uncertainty 
were useful to consider and that they generally captured the literature on the topic. 
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An important observation from the workshop is that model uncertainty is influenced by, and 
comprised of, more than just statistical precision, probability distribution functions, etc., or even 
model accuracy, although all are important parts of elucidating model uncertainty. In particular, 
observational error, and associated statistics, tends to be much higher in LMR models compared 
to more physical models. The many types of uncertainty that affect model uncertainty could 
instead be termed “model-associated uncertainty.” The term “model uncertainty” is used in this 
report to describe both model uncertainty and model-associated uncertainty. 
 
As noted above, there are multiple dimensions to model uncertainty. Parts of these 
considerations emerge more prominently as different standards across different disciplinary uses 
or types of model application are noted. The type of model application, particularly whether the 
model outputs would be used in a regulatory versus informative context, was a repeated point of 
discussion (NRC, 2007). For example, regulatory outputs that materially stop an activity have 
different standards than those that provide general information to inform decisions. 
Considerations regarding the spatial scale, time frame (both extent and resolution), taxonomic 
resolution and range, or whether the model output is used for a forecast, nowcast, or hindcast all 
merit attention when discussing model uncertainty, as well as how best to handle the types of 
model uncertainty and the level of rigor at which such uncertainty should be addressed (c.f. 
Table 1). There was a clear sense of the need for standards on the rigor of model uncertainty 
treatment, conditional on the different types of application. 
 
One element that arose from workshop discussions was that consistency in treatment of 
uncertainty can be as important as rigor, absolute determination, and accuracy when it comes to 
dealing with how model uncertainty is perceived and used by stakeholders. For example, the 
magnitude of fishery management buffer is expected to be scaled according to the degree of 
scientific uncertainty, so the magnitude of the buffer is linked to the perception of the absolute 
scale of uncertainty. The performance of the buffer is more important than getting the absolute 
scale of uncertainty correct. Similarly, consistency in terminology was also recognized as 
important and simple to convey but is an often overlooked element of model uncertainty. It was 
noted that communication uncertainty occurs even between different groups of modelers from 
related but subtly distinct disciplines.  
 
There are many recognized methods for addressing model uncertainty (Link et al. 2010, NRC 
2012, Townsend et al. 2014). These methods include approaches such as sensitivity analysis, risk 
analysis, improved data or model output visualization, management strategy evaluation (MSE), 
and multi-model inference (MMI, or model ensembles). The concept of MMI was repeatedly 
noted (e.g., Thorpe et al. 2015) as an approach that merits further consideration, as it can address 
multiple types of uncertainty. The same is also true for MSE (e.g. Punt et al. 2014).  Kinlan et al. 
(in Review) and Zipkin et al. (2014) provide examples of additional statistical approaches to 
define and portray uncertainty (as applied spatially in species distribution and abundance maps).  
 
The MMI approach has been employed in other disciplines (e.g., weather prediction—especially 
hurricane prediction, climate science, and social sciences; Barnston et al. 2012, Demuth et al. 
2012, IPCC 2013, Kirtman et al. 2014); doing so has helped to advance those fields of study and 
improve model utility. An easily recognizable example is the “cone of uncertainty” representing 
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potential hurricane trajectories as estimated by an ensemble of models (Gall et al. 2013).  MMI is 
also recommended for LMR and ecosystem assessment contexts (Townsend et al. 2014), with a 
few examples emerging (e.g., Gaardmark et al. 2013, Ianelli et al. 2015).  The objective for MMI 
is to improve marine resource management through a more accurate assessment of the 
uncertainty in marine resource predictions. Further attention is warranted on how to combine 
multiple models with different structures, parameters, analytical engines, underlying functional 
forms and theoretical assumptions. Certainly there are biases in any model given these 
considerations, yet employing MMI is a means to address these factors. We tend to treat each 
LMR assessment as a final model with outputs, albeit even with some measure of statistical 
error, but do not formally consider other models as an ensemble. Even one model with different 
assumptions and parameterizations (e.g., sensitivity analysis of one model as a limited form of 
MMI) does not always formally have results and formulations routinely reported on. Thus, MMI 
affords an opportunity to address some of the issues leading to different elements of model 
uncertainty. There would need to be minimum performance standards for inclusion of models in 
any such multi-model ensemble and clear protocols for how to assign weightings to different 
models in an ensemble if the models are to be averaged in any way. Typically any such 
weightings are based on model skill, but there are many nuances to skill definition (see below) 
and also other factors to consider (Burnham and Anderson 2003). Ensemble modeling 
approaches in other disciplines are based primarily on averaging methods. These methods 
include: simple means, means with individual bias corrections, means with collective bias 
corrections, regularization, and Bayesian Model Averaging (Townsend 2014) and so on, with an 
exploration of best practices from other disciplines (e.g., climate, flooding, hurricanes, etc.; 
Cornuelle et al. 2014, Townsend et al. 2014) in the form of MMI case studies was noted as 
something clearly worth pursuing. A particular challenge will be in communicating the results of 
MMI into a regulatory environment in which there is a requirement for clear documentation of 
the scientific basis for LMR management limits. If a range of model types was executed, perhaps 
extra caution would be needed when single-species predictions and those from other models 
diverge. 
 
The MSE approach also affords an opportunity to address many types of model uncertainty (de 
la Mare 1986, Smith et al. 1999, Punt et al. 2014).  The primary purpose of MSE is to objectively 
identify trade-offs in achieving multiple and different management objectives. Part of that is the 
exploration of different configurations of how the ecosystem and LMR dynamics actually occur, 
so as to develop robust strategies under a range of conditions and assumptions. MSEs have been 
applied in stock-focused LMR assessment contexts (Punt and Donovan 2007, A’mar et al. 2009), 
and there is increasing ability to execute such approaches for multiple species models (Ianelli et 
al. 2015) and full ecosystem models (Fulton et al. 2011a, b). The value of this approach is that it 
can couple the full range of the NOAA modeling efforts by using more complicated, inclusive 
models as “operating” models against which the performance of “estimation” models and 
management systems such as those nearer the left of Fig. 1 can be tested. For instance, the 
performance of time-varying random process error in single stock assessment models can be 
tested against ecosystem models capable of generating realizations of the true processes 
occurring in nature. This approach has strong potential to simulate and test a range of direct 
model uncertainties, but also explicitly deals with a lot of model-associated uncertainties like 
communication and outcome uncertainties.  
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Summary of Group Discussion 
• There are many types of model uncertainty. 
• Not all uncertainty is direct model uncertainty. Much is model-associated uncertainty. 

o Careful use of terminology is warranted when discussing model uncertainty. 
• Climate/weather forecasts are informational, whereas LMR forecasts/models are 

regulatory and directly impact how the resource will be used. That distinction may help 
differentiate which approaches of dealing with uncertainty, and level of rigor, are most 
appropriate. 

• There are many methods for dealing with model uncertainty. 
• Multiple model inference is an important area to explore to address multiple forms of 

uncertainty. 
o Models included in MMIs must meet certain requirements to be brought into the 

ensemble. Those standards would need to be developed by the modeling 
community.  

o One type of MMI inference is among models of similar complexity and scope, 
such as among the various models used for hurricane forecasting. 

o Another type of MMI is in the nesting of models of different complexity. For 
example, using large-scale ecosystem models to design fishery harvest strategies 
and then more tactical, simpler approaches to implement year-to-year 
implementation of that strategy. 

o An extended exploration and discussion of model weighting is warranted. 
o Differing philosophies and underlying assumptions behind each of the models in 

an ensemble can be beneficial. 
• Management strategy evaluation is also an important area to explore to handle multiple 

forms of uncertainty. 
o MSEs that couple ecosystem and stock dynamics are highly desirable. 
o MSEs that also include socio-economics are even more desirable. 
o Formal evaluation of the trade-offs in different modeling assumptions and biases 

is usefully explored via MSEs. 
o Formal evaluation of the trade-offs in meeting management objectives is the main 

goal of MSEs, and should be adopted more frequently than it is. 
• Resources for model development have been limited. There has been a struggle to 

develop single models, let alone multiple models.  
 

Best practices 
• Use MMI to bracket, include different perspectives on, compare mechanisms, and 

identify main sources of uncertainty. This is particularly important where predictions may 
qualitatively diverge. 

• Use MSE to bracket, communicate, and explore consequences of uncertainty. 
• Inform “epsilons” (i.e., statistical error) in simpler LMR assessment models by using 

more complicated models to help define epsilons and obtain covariance structure. 
• Develop consistency in modeling protocols and approaches for handling uncertainty. 
• Implement tighter (i.e., consistent, streamlined) reporting of model outputs into a 

standard format for LMR and Ecosystem assessments. 
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Recommendations 
• Establish guidelines for uniform application of MMI. Convene experts to address levels 

of rigor necessary (and uncertainty tolerance) for different model types and model 
applications. An outline is presented in Table 1.  

• Establish two to three pilot projects of MMI, similar to Gaardmark et al. 2013 and Ianelli 
et al. 2015. 

• Increase widespread development of MSE capacity. 
 

 
Figure 2.  Main types of modeling uncertainty in a typical LMR management system (adapted 
from Peterman 2004; Link et al. 2012). These uncertainties are represented by the ellipses as part 
of an LMR management system, natural variability (or process uncertainty), observation error (or 
estimation uncertainty), structural complexity (or model uncertainty), communication 
uncertainty, objective uncertainty (lack of clarity on goals and objectives; this is often lumped in 
with outcome uncertainty), and outcome uncertainty (or management performance uncertainty). 
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Table 1.  Example of a table to contrast factors contributing to model uncertainty, the type of 
model application, and recommended level of addressing both for each type of uncertainty.  Such 
a table would need to be filled out by experts; an example is provided here to compare across 
heuristic, regulatory, and informational applications. 
 
Application or 
Consideration/ 
Uncertainty 

Process 
Uncertainty 

Estimation 
Uncertainty 

Structural 
Uncertainty 

Communication 
Uncertainty 

Outcome 
(Objective) 
Uncertainty 

Tactical LMR & 
Ecosystem Mgt      

Quota, ACL, ABC, 
etc.      

Forecast      
Status Determination      

Include Ecosystem 
considerations      

Strategic LMR & 
Ecosystem Mgt      
Tradeoff Evaluation      
Compare Objectives      
Incorporate Climate 

Forecast      
Socio-economic 

outcomes      
      
Heuristic Use Hi Mod Lo Mod Lo 
Regulatory Hi Hi Mod Hi Hi 
Informational Lo Lo Lo HI Mod 
      
Spatial Extent      
Spatial Resolution      
Temporal Extent      
Temporal Resolution      
Taxonomic Extent      
Taxonomic 
Resolution      
Disciplinary focus      

Physio-chemical      
Bio-ecological      

Socio-economic      

Model skill evaluation 
Generally when we assess skill we are asking: how well does the model represent the “truth” 
over a specified range of conditions? Model skill assessments seek to provide an objective 
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evaluation of how well the model forecast (or nowcast) performs when compared to a reference 
set of conditions (typically, observations). Unfortunately, the “true conditions” against which 
models can be compared are not known nearly as well for LMR and ecosystem models as they 
are for climate and meteorological models. The tendency with LMR models has been to evaluate 
their performance according to how well the model compares to historical data. However, 
historical data can have many inadequacies in representing the past state of the resource, so skill 
in matching these data does not always equate with skill in forecasting future states of the 
resource (Legault 2009, Deroba 2014, Brooks and Legault in press). Another approach is to 
create an artificial simulated reality and then to test performance of a proposed approach against 
multiple realizations of that artificial reality, for example testing the performance of simple 
aggregated models against spatially structured realities (McGilliard et al. 2014). 
 
Evaluation of model skill has multiple facets. Typically these revolve around very quantitative 
and statistical measures of either model fit to historical data or model forecast. Perceptions of 
skill are often subjective, even with quantitative measures thereof, and this invokes the issues 
associated with communication uncertainty. Systematically evaluating model skill and cogently 
presenting those results goes a long way to addressing many facets of model uncertainty (e.g., 
Lynch et al. 2009, Stow et al. 2009, Zhang et al. 2010, Adams and Higdon 2012). 
 
Again, the main reason we develop these LMR and ecosystem assessment models is as decision 
support tools. Quantifying the uncertainty in the information provided by these models factors 
into the decision-making process. Given the complexity of most of these models, it is unlikely 
that we can execute a full uncertainty or sensitivity analysis for them, but given the emergence of 
novel methods, we can conduct rigorous skill assessments that reveal key uncertainties for 
quantities and temporal or spatial scales of interest (Stow et al. 2009, Olsen et al. in review). 
 
There are many measures of model skill. For example, measures of skill can include various 
types of correlation coefficients between model predictions and observations, measures of 
departure from accuracy in terms of central tendency and trend, measures of bias, modeling 
efficiency, and many others (Allen and Somerfield 2009, Stow et al. 2009). There are also some 
semi-quantitative and even qualitative evaluations of model skill, but these are not typically 
recommended unless there is very limited observation data with which to compare the model. All 
these measures inform different aspects of model skill.  The key point from the discussions, 
which reinforces emerging conclusions in the literature, is that model skill is evaluated relative to 
a specific set of quantities of interest (Adams and Higdon 2012), and that multiple measures of 
skill are needed to fully evaluate model performance (Stow et al. 2009). 
 
Concerns of extrapolation outside the range of observations (which is a common issue for 
climate change applications) were also discussed. Statistical or empirical approaches, which 
often lack mechanistic reality, frequently perform as well as specified complex 3D models (e.g., 
for El Nino, Barnston et al. 2012).  If a complex model does not do any better than a long-term 
average, it would have poor skill. However, an empirical model may not perform well when 
predicting outside of the range of data. Conversely, a complex mechanistic model that does not 
perform any better than an empirical model within the range of observations could potentially 
capture the underlying dynamics of the modeled system and generate more reasonable 
extrapolations outside the range of observations. How to move beyond data assimilation 
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techniques and evaluations of model skill in limited data situations or situations beyond the 
extent of collected data remains an important area of research. In particular for fisheries and 
ecosystems, most of our data come from the past 30 to 50 years and represent ecosystems in 
transition for lightly fished systems to more extensive levels of harvest to which the systems 
have not yet fully adjusted.  Thus the full range of potential compensations may not yet have 
been observed. In the LMR and ecosystem assessment context, the ability to hindcast is an 
important aspect of model skill that also merits continued attention, although hindcast skill does 
not necessarily imply forecast skill (Hastie et al. 2009, Fienen and Plant 2015). 
 
One method of using MSEs is to develop test datasets for testing the performance of simpler 
models. In physical systems that have more direct observations of the system, one can use model 
skill against observational datasets. Absolute model skill is easier to evaluate when there are 
direct measures of the quantities of interest from the modeled system, as in physical systems 
such as weather or hurricane forecasting (e.g., Hamill and Juras 2006). This approach is not 
available for the vast majority of living marine resource models. Data simulation would be 
necessary for LMR model skill evaluations. Thus, using complex models with more interacting 
parts that can be used to generate test environments for simpler models seems a viable approach. 
 
A repeated observation at the workshop was that the application of model skill criteria in the 
published literature is inconsistent. There is no clear standard or protocol generally for this broad 
class of models, certainly not for any LMR or ecosystem modeling. There appears to be a 
gradient in maturity of skill assessment methods (e.g., tides perhaps most mature, harmful algal 
bloom forecasts needing more work; Hess et al. 2003, Zhang et al. 2010), and certainly the 
criteria of what is acceptable skill will differ depending upon on the application of the model  
and the quantities of interest (Adams and Higdon 2012). Developing basic criteria for model 
performance would be helpful to lend consistency to review processes, especially as new and 
more complex models are developed for use in management contexts. Further, performance 
criteria could be used to determine which models might best be assembled into an ensemble for 
management decision-making. 
 
Beyond identifying direct model issues and diagnostics, model skill helps address other model-
associated facets of uncertainty. For instance, model skill helps communicate to users, 
stakeholders, and resource managers how well the model works. It can also provide feedback to 
data collection and monitoring programs. 

 
Summary of Group Discussion 

• Model skill is the performance of particular model fit and forecast in comparison to a 
reference set of information. 

• Model skill is important to convey the confidence of model performance. 
o Communicating model skill simultaneously addresses many facets of model 

uncertainty. 
• Different modeling approaches have unique strengths and complementary values. To use 

models as an ensemble suite, there need to be some common skill metrics.  
• There are many measures of model skill. 
• Multiple measures are necessary to fully characterize model skill. 
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• Testing models with test-bed dataset (often generated by more complex models) is an 
increasingly viable approach. 

• Standards for model skill should consider that: 
o There are several “best practices” publications, but not regarding skill assessment.  
o They are likely different across model applications. 
o Some minimal performance standards for use in LMR and ecosystem assessments 

are warranted. 
• Continuing to collect data with which to validate models is obvious, but important. 

o Feedback to monitoring systems should be made more explicit. 
 

Best practices 
• Utilize multiple metrics of quantitative model skill. 
• Adopt Verification, Validation, and Uncertainty Quantification (VVUQ; NRC 2012) 

standards. 
• Utilize appropriate diagnostic and visualization tools when reporting model skill. 
• Communicate regularly among models and observing systems. 

 

Recommendations 
• Document model skill for all LMR and ecosystem assessment models. 
• Establish guidelines to determine Minimal Performance Standards of skill criteria for the 

different levels of model application. 
 

Human Dimensions  
Many challenges with model uncertainty have little to do with the direct quantitative facets of the 
model. Rather, they stem from the human perceptions of uncertainty, how familiar users and 
stakeholders are with the model, and how communication about the model, its outputs, and 
methods contribute to that perception (Spiegelhalter et al. 2011).  Specifically, communication 
transmits information, data, and findings, but how communication is done also enables or inhibits 
the building of trust, credibility, and legitimacy in the science, models, and the scientific and 
modeling process. In other words, this human domain of model uncertainty has limited 
responsiveness to increases in Mohn’s rho, R2, MEF, RMSE. Rather, it has almost everything to 
do with how well users, stakeholders, managers, and other partners perceive the model and the 
modeler and how we might communicate about the model, Mohn’s rho, R2, MEF, or RMSE 
(Fulton et al. 2011b).   
 
These types of considerations are not typically the priority consideration among natural scientists 
executing these modeling exercises. Fortunately this workshop had active participation by 
several social scientists expert in human perception and cognition. There are several Social 
Science fields that study decision-making under conditions of uncertainty. These include: 
decision sciences, risk perception (psychometrics), behavioral economics, communication 
science, and public policy, among others (e.g., Kahneman et al. 1982, Rosenberg and Restrepo 
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1994, Slovic 2000, Eggert and Martinsson 2004, Fletcher 2005, Kompas et al. 2008). Learning 
key messages from those fields will continue to be invaluable for the modeling community.  
 
How do people, particularly non-experts, perceive and respond to uncertainty? All people have 
and will apply their cognitive biases or heuristics. For instance, people tend to reject information 
that does not support their pre-existing values and world view, which are defined in large part by 
their social context (e.g., their groups, professional norms, cultural norms, etc.).  Attempting to 
address these biases directly through education has shown that the “deficit model” is not 
effective—i.e., educating the public or stakeholders to better understand science (science 
literacy) will not lead to fewer controversies or disagreements over science, models, and 
uncertainty. People yearn for predictability, can be uncomfortable with ambiguity, and can go to 
extraordinary cognitive efforts to seek patterns in information and establish predictability. People 
tend to jump to conclusions, rapidly binning new information with familiar stereotypes and 
categories, such that first impressions are very important and often hard to overcome. Context 
also matters in how different audiences perceive uncertainty. For example, the general public can 
interpret the term “uncertainty” as ignorance and the term “error” as mistake (c.f. Table 2; 
Johnson and Slovic 1995). Or resource managers, fishermen, NGOs, and other stakeholders who 
might be more knowledgeable about the modeling may respond to scientific information, 
uncertainties, etc. in different ways when they are sitting at a council table in a political, public 
setting than they might in the hallway over a coffee break, in a non-public, less decision-making 
context. Trust in and credibility of the messenger impacts how people perceive the information 
and uncertainty. The source, context, and presentation of the information matter. 
 
How can LMR and ecosystem modelers effectively communicate about uncertainty given these 
inherent challenges and known biases? Recognizing that different audiences have different 
perspectives, will make different assumptions, and communicate differently is a key first step. 
Accounting for these known cognitive biases and group norms is one way to more effectively 
communicate. For example, developing narrative stories appropriate for a given culture helps 
effective communication. It is clear that the modeling community would be wise to develop 
protocols with principles for reporting these various sources of uncertainty, particularly such that 
frameworks are established to allow our partners and the public to easily understand highly 
technical information. 
 
It is critical to identify and characterize the range and diversity of audience segments (e.g., even 
within the LMR-associated community), as multiple sectors will have different social norms and 
values, different preferences for receiving information, different foundations of knowledge, etc. 
Tailoring messages and communication tools for each audience segment is therefore prudent. 
While no single set of answers will work in all situations and for all stakeholders, the climate 
change communication science community has developed tips on how to convert scientific 
terminology into more common language (Table 3; Somerville and Hassol 2011, Johnson 2012, 
Fiske and Dupree 2014). 
 
Since trust and credibility of the messenger is important, there are strategies for increasing trust 
and credibility in the scientist. For example, listening well and asking follow-up, clarifying 
questions of stakeholders illustrate that a scientist is genuinely interested and respects the 
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opinion and knowledge of the stakeholder. A person is more likely to be given respect and 
credibility if he shows respect and credibility to others.   
 
Further, context matters in many ways in human interactions and that is clearly true among 
fishermen, scientists, managers, NGOs and others in LMR management. In a fishery 
management council meeting the stakes are high, the allocation of fishery quota and viability of 
livelihoods are made, and stakeholder interests can be in competition with one another. 
Communication can take very different forms at the council table versus in the hallway during a 
coffee break. Changing the context can provide a more constructive, safer, less threatening 
setting for listening and learning about science and models. For example, fishery management 
council training programs, stakeholder training programs (like the Marine Resource Education 
Project), collaborative fisheries research, etc. provide venues for the more iterative dialogue that 
helps overcome biases and builds greater trust and credibility (Hartley and Robertson 2009, 
Hartley and Glass 2010). Fisheries-specific tactics have been developed to increase openness and 
transparency in the scientific and modeling process, which in turn increases credibility of the 
outputs and provides venues to promote engagement between scientists and stakeholders that 
build trust between the two communities.   
 
Table 2. Procedures for addressing uncertainty in fisheries management deliberations. From 
Hartley in press and Dankel et al. 2012. 
 
Technique: Description: 

Pedigree analysis Multi-criteria, qualitative characterization of the origins and status of 
information and data. 

Uncertainty matrix Classification method where a panel of experts numerically rate the 
nature and scale of the uncertainty on several defined parameters 

Extended peer-
review 

Involving multiple disciplines and stakeholder perspectives on a peer-
review panel 

Incorporating and 
respecting traditional 
or local knowledge 

Participatory approaches and incorporate traditional or local knowledge, 
e.g., Q-Method is based upon the conceptual framework of factor 
analysis, seeking correlations between variables. The Q-Method is 
concerned with individuals’ viewpoints, seeking shared views or 
correlations across a sample of individuals and clarification on points of 
agreement and disagreement. 

Participatory 
modeling 

Facilitated, structured dialogue about uncertainty and the quality of the 
state of knowledge among scientists and stakeholders to enhance 
scientific understanding. 

Collaborative 
research 

Joint development, design and implementation of scientific monitoring 
or research activities. Collaborative at all stages of the scientific process 
from developing questions, through design and implementation, to 
communicating the findings and results.   
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Additional tactics being used in LMR management includes Management Strategy Evaluation, 
and a range of Visualization tools (e.g., Kemp and Meaden 2002, Mayer et al., 2002, Holland 
2010). 
 
While effectively communicating complex scientific and technical information to non-experts 
can be daunting and requires patience and targeted effort, it is essential to develop the credibility 
in the message and the messenger, build trust, and establish legitimacy of the modeling and 
management process in the eyes of the managers, fishermen, NGOs, and other stakeholders in 
LMR management. There are a wide range of tools and approaches to assist with communicating 
model uncertainty, and the modeling community would be wise to increasingly adopt these tools 
and enter partnerships with the social science disciplines that develop them. 
 
Summary of Group Discussion 

• Considerable uncertainty surrounding LMR and ecosystem models arises from the way 
humans perceive and communicate about risk and uncertainty. 

• There are many biases and factors that influence perception when communicating about 
model uncertainty. 

o There is a challenging balance and some disagreement among social scientists on 
the impact of focusing on uncertainty to varying degrees. Communicating about 
uncertainty in an open and transparent manner builds trust and credibility in the 
messenger, which in time will engender trust and credibility in the model. But 
before the messenger is accepted as trustworthy, the discussion of scientific or 
model uncertainty may be perceived by some as ignorance of the issue.  

o Uncertainty can be in the eyes of the beholder—e.g., a scientist may think talking 
about uncertainty provides a deeper understanding of the natural phenomenon, 
whereas a distrustful fisherman may interpret it as the scientist not knowing what 
they are talking about. Yet, one needs to talk about uncertainty to be open, 
transparent, and build trust with the fishermen.   

• The modeling community should consider whether we should use our best storyteller or 
our best technical expert in key communication contexts. This decision should be driven 
by the target audience.   

• Knowing one’s audience is the paramount rule (what information do they need, how do 
they make decisions, what are their concerns, etc.?). There are readily available 
mechanisms that can help assess particular audiences of interest.  

• Addressing/communicating uncertainty is essential, and fortunately there are many extant 
tools to assist in doing so and social scientists and practitioners (e.g., Sea Grant) willing 
to partner on advancing effective communication. 
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Table 3.  Examples of different perspectives on technical terminology by scientists and the 
public. From Somerville and Hassol 2011. 
 

Terms that have different meanings for scientists and the public 
Scientific term Public meaning Better choice 
enhance improve intensify, increase 
aerosol spray can tiny atmospheric particle 
positive trend good trend upward trend 
positive feedback good response, praise vicious cycle, self-reinforcing cycle 
theory hunch, speculation scientific understanding 
uncertainty ignorance range 
error mistake, wrong, incorrect difference from exact true number 
manipulation illicit tampering scientific data processing 
scheme devious plot systematic plan 
  

 Best practices 
• Know your audience. 

o First consider the audience and the ways that it best receives information.  
o Maintain consistency in message but mechanism of delivery may be quite 

different based on the audience. 
• Tell stories. 
• Build trust by taking advantage of as many face-to-face interactions as is feasible—both 

those we create and those ad hoc opportunities we attend.  
o Putting a face to the message improves public trust, regardless of who is 

delivering the message.  
o Seek connections, commonalities. 

• Practice with family/friends who are not experts in the field.  
• Focus on aspects that people care most about—what makes this relevant to someone, why 

do they have a stake in the outcome?  
 

Recommendations 
• Explore communication training options for the modeling community. 
• Establish venues for further interaction among communications and cognitive experts 

with the modeling community. 
• Codify protocols for effective reporting on various sources of model output and 

uncertainty. 
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Summary and Conclusions 
 
There are many similarities between NMFS and OAR modeling efforts, including LMR 
assessments, water quality modeling, habitat modeling, and ecosystem assessments. Other 
partners, including NOS modelers, also provided highly comparable perspectives. This workshop 
capitalized on those commonalities and leveraged a significant body of work to explore model 
uncertainty. As the need for LMR and ecosystem models continues to grow, ensuring these 
models are credibly received and utilized remains an important task. 
 
The suite of best practices identified at the workshop will well serve ongoing and future efforts 
to handle model uncertainty. A key outcome of this workshop includes a catalogue of best 
practices to address model uncertainty that describes methods to improve NOAA’s LMR and 
ecosystem modeling enterprise. 
 
The enhanced networking and cross-disciplinary perspectives that arose during workshop 
deliberations is an important outcome to recognize. It was clear that continued coordination on 
common issues is warranted. This was a rare meeting in which social scientists were fully 
engaged and integrated in the planning and discussions, which emphasized the need to continue 
to engage social scientists to better communicate about model uncertainty. Additional outcomes 
include collaborations, future/enhanced/ongoing innovations, research, and operational 
development that will continue to pay dividends in the future. 
 
The workshop made clear that, despite the many lessons learned, no “silver bullet” exists to 
address uncertainty across all dimensions of the various models and types of uncertainty. The 
suite of best practices noted here will go a long way to address model uncertainty. Even 
something as simple as a “cheat sheet” of when to use certain approaches to address specific 
types of uncertainty across model applications, a “template” of standard output reporting for 
LMR and ecosystem assessment outputs (e.g., ICES 2010), and common usage of quantitative 
information to explore model skill would be beneficial. 
 
Key observations centered on the use of multi-model inference, management strategy evaluation, 
and improved use of communication tools. Those items form the bulk of our best practices and 
recommendations. It bears repeating that Management Strategy Evaluation (MSE) and Multi-
model Inference (MMI) present significant utility to the modeling community.   
 
We summarize the best practices and recommendations from this workshop below and note that 
cross-disciplinary, cross-organizational meetings like this workshop to coordinate and advance 
modeling efforts are very beneficial and should continue. 

 

Summary of Best practices 
Uncertainty 

• Use MMI to bracket, include different perspectives on, compare mechanisms, and 
identify main sources of uncertainty. 
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• Use MSE to bracket, communicate, and explore consequences of uncertainty. 
• Inform “epsilons” (i.e., statistical error) in simpler LMR assessment models by using 

more complicated models to help define epsilons and get covariance structure. 
• Develop consistency in modeling protocols and approaches for uncertainty handling. 
• Implement consistent, streamlined reporting of model outputs into a standard format for 

LMR and ecosystem assessments. 

Model Skill 
• Use multiple metrics of quantitative model skill. 
• Adopt VVUQ (NRC 2012) standards. 
• Use appropriate diagnostic and visualization tools when reporting model skill. 
• Communicate regularly among modelers and observing systems. 

Communication 
• Know your audience. 
• Tell stories. 
• Build trust by adopting as many face-to-face interactions as is feasible. 
• Practice with family/friends who are not experts in the field. 
• Focus on aspects that people care most about. 

 

Summary of Recommendations for Addressing Modeling Uncertainty 
• Establish guidelines for uniform application of MMI. 
• Establish 2 to 3 pilot projects of MMI. 
• Increase widespread development of MSE capacity. 
• Document model skill for all LMR and ecosystem assessment models. 
• Establish guidelines to determine Minimal Performance Standards of skill criteria for the 

different levels of model application. 
• Explore communication training options for the modeling community. 
• Establish venues for further interaction among communications and cognitive experts 

with the modeling community. 
• Codify protocols for effective reporting on various sources of model output and 

uncertainty. 

Next steps: Major Recommendations to NOAA leadership 
1. Seek NOAA leadership support for a full range of quantitative modeling efforts across a 

spectrum of complexity and disciplinary emphasis in support of living marine resource 
management mandates. 

2. Establish routine and regular venues for the NOAA modeling community to meet and 
interact. 

3. Support and advance cross-line-office and cross-disciplinary (including social science) 
coordination on this issue. 
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Appendix A – Agenda 
Day 1 – Monday April 13 Presenter or discussion leader/facilitator 
12:00 -12:10 

Plenary 1 

Welcome, Logistics Doran Mason 
12:10-12:30 Introduction, Background Layout plans for workshop Jason Link 

12:30-2:30 ToR 1: Types of assessment models used for LMR and 
ecosystem assessments 

ToR 1 Discussion Leader: Jason Link 

12:30 • Primer on types of models used in NMFS ecosystem and 
living marine resource assessments 

• Rick Methot and Howard Townsend 

1:15 • Brief overview of models used in OAR • Doran Mason 
2:00 Discussion on models and assessments  Jason Link 

2:30-2:45 Coffee break 
2:45-4:00, cont. day 2 

Plenary 2 

ToR 2: Methods for addressing uncertainty ToR 2 Discussion Leader: Jessie Carman 
2:45 • Types of modeling uncertainty  • Jim Ianelli and Sarah Gaichas 

3:30 • Forecasting uncertainty in the physical environment: 
approaches and implementation • Gregg Jacobs 

3:45 
• Forecasting impacts of Asian carp on the Lake Erie food web; 

application of expert solicitation to estimate parameter 
uncertainty 

• Hongyan Zhang 

4:00-5:00 Breakout 1 Discuss methods for addressing uncertainty in ecosystem and 
LMR models and assessments 

Group 1: Sarah Gaichas and Jim Ianelli 
Group 2: Howard Townsend and Rick 
Methot 

5:00 Adjourn Day 1 

6:30 Dinner Grizzly Peak Brewing Company, 120 West Washington Street, downtown Ann Arbor. 
Meet in the hotel lobby at 6 pm to carpool. 
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Day 2 – Tuesday April 14  

8:30 

Plenary 2 

Recap previous day. Layout plans for day 2 Jason Link 
 ToR 2 continued Jessie Carman 

8:45 Breakout groups report on methods for addressing uncertainty 
(ToR 2) 

Group 1: Sarah Gaichas and Jim Ianelli 
Group 2: Howard Townsend and Rick 
Methot 

9:30 Group discussion on breakout group findings, identify best 
practices 

Jessie Carman 

10:00-10:15 Coffee break 
10:15-3:45 

Plenary 3 

ToR 3: Model skill evaluation ToR 3 Discussion Leader: Charlie Stock 
10:15 • Overview of model skill evaluation: A Reasonable Fit to Data • Craig Stow 

10:45 • Skill assessment and estimating forecast uncertainty in 
National Ocean Service physical and ecological models • John G.W. Kelley 

11:00 • Hierarchy of model skills and evaluation • Yan Jiao 
11:15 • Skill assessment of the Atlantis Ecosystem model  • Erik Olsen 

11:30 General discussion on model skill evaluation, especially in 
relation to characterizing model  uncertainty 

Charlie Stock 

12:00-1:00 Lunch break 
1:00-2:00 Breakout 2 Discuss approaches for model skill evaluation  Group 1: Sarah Gaichas and Jim Ianelli 

Group 2: Howard Townsend and Rick 
Methot 2:00-3:00 Plenary 3 Breakout groups report on model skill evaluation (ToR3) 

3:00-3:15 Coffee break 

3:15-3:45 Plenary 3 Group discussion on breakout group findings, identify best 
practices 

Charlie Stock 

3:45-4:45 
Plenary 4 

Human dimensions of uncertainty: 
• How do people, particularly non-experts, perceive and 

respond to uncertainty?  
• How do we effectively communicate about uncertainty 

and models in order to enable constructive public and 
management deliberations? 

Troy Hartley 
 
• Sol Hart 
• Karen Akerlof 

4:45 -5:00 Group discussion on human dimensions, identify major best 
practices Troy Hartley 

5:00 Adjourn Day 2 
Dinner on your own. Explore Ann Arbor! 
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Day 3 – Wednesday April 15  

8:30 

Plenary 5 

Recap previous day. Layout plans for day 3. Jason Link 
8:45-12:00 Capturing best practices and next steps (ToR 4) 

ToR 4 Discussion Leader: Jason Link 
8:45 

Discuss how best to tie together concepts of addressing model and 
assessment uncertainty, evaluating model skill, and 
communication/presentation thereof  

9:15 Breakout 3 
Identify major lessons learned for addressing model and 
assessment uncertainty, evaluating model skill, and 
communication/presentation 

Group 1: Sarah Gaichas and Jim Ianelli 
Group 2: Howard Townsend and Rick 
Methot 

10:15-10:30 Coffee break 

10:30 Plenary 5 
Develop recommendations and best practices for addressing 
model uncertainty for use in ecosystem and LMR assessments; 
next steps (ToR 4)  

Jason Link 

12:00 Adjourn Day 3 
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Appendix C – Steering Committee 
 
Jessie Carman 
Sarah Gaichas 
Troy Hartley 
Chris Hayes 
Jim Ianelli 
Terra Lederhouse 
Jason Link 
Doran Mason 
Richard Methot 
Howard Townsend 
 

Appendix D – Discussion of trigger and breakout questions for ToRs 
and Human Dimensions sessions. 
 
TOR 1: Models and assessments 
• What distinguishes purely a modeling effort from an assessment effort? 
• What constraints are there in doing applied LMR & Ecosystem assessments? 
• How do we handle the challenge of meeting our mandates yet maintaining space for 

innovation? 
• What can NMFS learn from OAR modeling efforts? 
• What can OAR learn from NMFS modeling efforts? 
• How do the modeling communities handle uncertainty? 
• Are there common LMR and ecosystem modeling efforts we could better harmonize? 
  
TOR 2: Addressing uncertainty 
Breakout Qs: 

• Can we readily reference, and agree upon, definitions and types of model uncertainty? 
• Are there common means for addressing uncertainty?   

– If so, can we list the top 3-5 approaches? 
– Can we reference them?  Can we document such best practices? 

• How do we determine which approach is most appropriate under given conditions?  
• What is the particular role of Multi-model inference in handling uncertainty? 

 
Best practices identified: 

• Any common themes 
• What 2-3 things can we highlight as best practices for addressing model uncertainty? 

 
TOR 3: Model skill and uncertainty 

• Why is model skill important to characterize? 
• Can we provide consistent and common measures on this? 
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• What is the role of qualitative measures or perceptions of model skill? 
• Does an evaluation of model skill assist with how model uncertainty is handled? 

 
Breakout Qs: 

• Can we readily reference, and agree upon, a definition of model skill? 
• Are there common means for evaluating model skill?   

• If so, can we list the top 3-5 approaches? 
• Can we reference them?  Can we document such best practices? 

• In what ways does model skill help address uncertainty? 
• What levels of model skill are most appropriate under given circumstances? 
• Best practices identified: 
• Any common themes 
• What 2-3 things can we highlight as best practices for addressing model skill? 

 
Human Dimensions: 

• How do people, particularly non-experts, perceive and respond to uncertainty?  
• How do we effectively communicate about uncertainty and models in order to enable 

constructive public and management deliberations? 
• How do we achieve decisions, with suitable stakeholder buy-in, in the face of 

uncertainty? 
 
TOR 3 + Human Dimensions: 

• What 2-3 things can we highlight as best practices for incorporating how we 
communicate model uncertainty? 

• What are key lessons about the role of understanding how well models are perceived to 
work as that relates to how well models will be used? 

• How do we handle and address perceptions regarding use of multiple, potentially 
competing, models? 

 
TOR 4: Summarize best practices/lessons learned 

• Are there main lessons learned that we can categorically employ to address model 
uncertainty? 

• Are there 1 or 2 particular methods that will address and communicate model uncertainty 
and skill well? 

• If you were the NOAA Administrator, what 1 modeling or model-related effort would 
you prioritize and fund to ensure our modeling is best used? 
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