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Abstract Transient ecosystem-level disturbances such
as oxygen depletion (hypoxia) in aquatic systems mod-
ulate species distributions and interactions. In highly
eutrophic systems, hypoxic areas (Bdead zones^) have
expanded around the world, temporarily preventing
many demersal predators from accessing their food
resources. Here, we investigate how yellow perch
(Perca flavescens), an exploited, cool-water
mesopredator, interact with their dominant invertebrate
prey in benthic habitat–non-biting midge (chironomid)

larvae–as bottom-water hypoxia develops in central
Lake Erie (United States–Canada) during summer. We
apply linear mixed-effects models to individual-level
data from basin-wide field surveys on size-based inter-
actions between perch and midge larvae under varying
habitat conditions and resource attributes. We test if 1)
midge populations (larval body size and density) differ
among habitat states (unstratified normoxia, stratified
normoxia, and stratified hypoxia); and 2) size-based
perch–midge interactions (predator–prey mass ratio
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or PPMR) differ among habitat states with varying
temperature and midge density. Midge populations
remained highly abundant after bottom-water oxygen
depletion. Despite their high densities, midge larvae also
maintained their body size in hypoxic water. In contrast,
perch on average consumed relatively smaller (by up to
~64%) midges (higher PPMR) in warmer and hypoxic
water, while prey size ingested by perch shrunk less in
areas with higher midge density. Our analysis shows
that hypoxia-tolerant midges largely allow perch to
maintain their consumer–resource relationships in
contracted habitats through modified size-mediated in-
teractions in dead zones during summer, revealing plas-
ticity of their trophic coupling in the chronically
perturbed ecosystem.

Keywords Foodweb . Trait-mediated . Foraging . Body
size . Great Lakes . Hierarchical modeling

Introduction

Ecosystem state modulates energy fluxes that fuel pri-
mary and secondary production through trophic interac-
tions in aquatic systems (Carpenter et al. 1985;
Benndorf et al. 2002). However, ecosystem-level per-
turbations by human activities such as nutrient enrich-
ment, pollution, and habitat destruction have disrupted
species performance, populations, species assemblages,
and food webs in many systems (Lotze et al. 2011;
Lotze and Milewski 2004). In particular, areas with
low dissolved oxygen (DO) concentration (hypoxia–
defined hereafter as ≤2 mg O2 l−1) or Bdead zones^
induced by excessive nutrient loading have expanded
(Diaz and Rosenberg 2008) and become of ecological
importance worldwide, modifying species distributions
and interactions (e.g., Mesa et al. 2005; Taylor et al.
2007). Although eutrophication may promote some
warm-water herbivore (e.g., invasive carps) production
(Djemali et al. 2017), further expansion of dead zones
may have implications for ecosystem services such as
fisheries production and distribution of cool- and cold-
water species in these perturbed systems (Breitburg
2002; Breitburg et al. 2009).

Spatial and temporal variation in ecosystem properties
such as temperature can drive individual-level processes of
trophic interactions among ectotherms through prey acces-
sibility and predator behavior (bottom-up control, Persson
1986; Diehl 1992; Abrahams et a l . 2007) .

Moreover, natural and human-induced disturbances such
as surface water warming and droughts may further con-
strain aquatic predator–prey interactions (Abrahams et al.
2007; Domenici et al. 2007). In eutrophic systems, when
thermally stratified, hypoxia often develops as DO con-
centration declines to stressful levels for organisms below
the pycnocline or thermocline. Hypoxia effects on preda-
tor–prey interactions thus likely depend on the tolerances
(and resulting spatial redistributions) of the predator and
the prey to hypoxia (Kolar and Rahel 1993; Abrahams
et al. 2007). In some cases, spatial overlap between pred-
ators and prey may increase as their habitat sizes shrink as
DO concentration declines (Costantini et al. 2008; Brandt
et al. 2011). In bottom waters, resilient predators may
experience higher prey availability as sediment-dwelling
organisms are forced by hypoxia (or anoxia) to surface and
become vulnerable to predation (Pihl et al. 1992; Roberts
et al. 2012). By contrast, sensitive predators may miss
foraging opportunities in benthic habitat and switch to
alternative prey resources (e.g., from zoobenthos to
zooplankton, Pothoven et al. 2009) as they escape into
shallow oxygenated nearshore areas or into oxygenated
surface waters (Magnuson et al. 1985; Zhang et al. 2009).

Stability and strength of predator–prey interactions
also depend on species traits (Emmerson and Raffaelli
2004). Body size is such a trait that may filter environ-
mental variability through physiological responses (e.g.,
temperature-dependent metabolism) and in turn govern
ecological processes (e.g., size-dependent prey capture)
in trophic interactions and energy transfer (Barnes et al.
2010; Brose et al. 2006; Woodward and Warren 2007;
Goto and Wallace 2011). In hypoxic bottom-waters of
thermally stratified systems, because of limited time for
searching and handling prey, some predators may con-
sume prey differently (Brante and Hughes 2001; Shin
et al. 2005). Further, because of hypoxia-induced shifts
in prey spatial distribution, these predators may also
experience modified accessibility to size-structured re-
sources (Pihl et al. 1992). Variability in predator–prey
body mass ratio may thus reflect integrated processes in
organisms and the environment modified by transient
ecosystem disturbances (Woodward and Warren 2007;
Nakazawa et al. 2011).

Here, we investigate consequences of summer
bottom-water oxygen depletion for trophic coupling by
yellow perch (Perca flavescens) in benthic habitats of a
large, eutrophic system, Lake Erie (United States–Can-
ada; Fig. 1). Its largest (central) basin (~11,000 km2) of
Lake Erie has been experiencing increasingly
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widespread seasonal (late summer/early fall) hypoxia
during recent decades because of human-driven envi-
ronmental changes (Rucinski et al. 2010; Scavia et al.
2014). Recent ecosystem state shifts likely have induced
a series of extreme events such as massive harmful algal
blooms (Michalak et al. 2013), which may modify food
web balance and threaten cool- and cold- water fisheries
production (Scavia et al. 2014). Lake Erie yellow perch
are a productive, cool-water mesopredator that supports
one of largest capture fisheries in North American fresh-
waters (Roseman et al. 2008), with annual lake-wide
total (commercial and recreational) harvest ranging from
over 2700 to 5000 metric tons (~95% from Ontario and
Ohio waters) during 2000–2015 (Belore et al. 2016). A
benthic stage of perch bridges the gap between the
planktivorous larval stage and the piscivorous adult
stage, allowing them to grow out of size-dependent
predation risk. Unlike many other predators, some perch
continue to ingest zoobenthos such as chironomid (non-
biting midge) larvae and pupae in hypoxic bottom wa-
ters (Roberts et al. 2009, 2012). We use individual-level

data sets from large-scale field observations to examine
variability in a size-mediated interaction between perch
and midge larvae–a dominant benthic invertebrate–un-
der varying habitat conditions and resource attributes to
test the following questions: 1) do the quality and quan-
tity of resources–midge populations (larval body size
and density)–differ among bottom-water habitat states
(stratification and oxygen depletion)?; and 2) do size-
mediated consumer–resource links (perch–midge body
size ratio) differ among habitat states with varying tem-
perature and food density gradients?

Materials and methods

Central Lake Erie field surveys

We collected yellow perch (juveniles and adults) and
non-biting midge larvae as part of large-scale scientific
surveys, International Field Years of Lake Erie (IFYLE;
www.glerl.noaa.gov/res/projects/ifyle/), conducted at

Fig. 1 Locations (A, B, D, and H in 2005, and B, S, T, U, Y, D2, D3, SN, and SS in 2007) of field survey stations in central Lake Erie.
Contour lines (10 m) indicate bathymetry; gray areas indicate land; and white areas indicate water
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13 stations in the central basin of Lake Erie across two
years (2005 and 2007). We sampled at three to five
stations on June 17–21, August 15–18, September 17–
19, and October 13–14 of 2005, and August 27–30 and
September 17–20 of 2007 (Table 1 and Fig. 1). Detailed
sample collection and processing methods were
documented previously in Pothoven et al. (2009) and
Roberts et al. (2009). Briefly, we conducted bottom (13
mm mesh lining) and mid-water (6.4 mm mesh lining)
trawling every four hours over a 24-h sampling period
along a five km transect at each station on each sampling
date. Once collected, we identified, counted, and imme-
diately stored fish samples at −20 °C until processing for
diets in the laboratory. In the same cruises, we also
collected zoobenthos once during each 24-h period in
triplicate at the middle and endpoints of each site tran-
sect using a Ponar grab sampler (250 μm mesh; sam-
pling area = 0.046 m−2; n = 9 per station and date).
Depth-specific water temperature and dissolved oxygen
data were recorded using a CTD (Conductivity, Tem-
perature, and Depth), fluorometer and dissolved oxygen
sensor (Sea-Bird Electronics, Bellevue, WA, USA)

every 24 h at each east–west five-km station transect
(n = 3 per station). We identified seven thermally un-
stratified normoxia (>2 mg O2 l−1), eight stratified
normoxia, and six stratified hypoxia (≤ 2 mg O2 l−1)
events during 2005 and 2007 surveys (Table 1).

In the laboratory, we measured the total mass (g wet)
of each perch; in total, we processed 1126 fish from the
2005 and 2007 surveys [see Roberts et al. (2012, 2009)
for detailed diet analysis]. We identified, counted, and
measured (nearest 0.0001 mm) the body length
(n = 5375 individuals, at least 20 individuals per fish
sample when available) of midges in 433 perch
stomachs (Table 2). Similarly, we identified, counted,
and measured the body length (n = 3935 individuals, at
least 20 individuals per sample when available) of
midges in Ponar grab samples (Table 2). When parts of
the body were missing (and fewer than 20 individuals
were available), we measured the head capsule width
(mm) and estimated the total body length (mm) using
the following regression derived from the survey sam-
ples: ln(total body length) = 1.48 × ln(head width) +
3.37 (R2 = 0.99).We then converted body length to mass

Table 1 Environmental characteristics of bottom-water (hypolimnion) habitats at survey stations in central Lake Erie during 2005 and 2007

Year Month Station Temperature (°C) Dissolved oxygen (mg O2 l−1) Hypolimnion thickness (m) Hypolimnion habitat status

2005 June A 9.6 9.0 8.8 normoxia

2005 June B 8.7 10.5 9.8 normoxia

2005 June C 9.0 9.0 NA unstratified

2005 June D 10.2 11.2 7.5 normoxia

2005 August B 10.3 4.6 9.3 normoxia

2005 August D 13.0 4.8 3.1 normoxia

2005 August H 11.7 2.7 4.1 normoxia

2005 September A 11.6 1.1 5.8 hypoxia

2005 September B 11.3 1.5 6.1 hypoxia

2005 September H 15.6 0.9 2.0 hypoxia

2005 October B 18.8 7.5 NA unstratified

2007 August B 11.8 2.1 7.0 normoxia

2007 August S 12.8 1.4 2.5 hypoxia

2007 August T 23.9 6.6 NA unstratified

2007 August U 20.5 4.1 2.5 normoxia

2007 August Y 23.8 6.9 NA unstratified

2007 September B 12.1 1.0 4.5 hypoxia

2007 September D2 20.8 6.7 NA unstratified

2007 September D3 20.9 6.8 NA unstratified

2007 September SN 12.7 1.4 2.5 hypoxia

2007 September SS 18.6 4.5 NA unstratified
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using the following power function derived from Lake
Er ie midges f rom the 2005 survey : Body
mass = 0.0013 × (total body length)2.69 × 10−3 (T. Nalepa,
NOAA-GLERL, personal communication).

Statistical modeling

We tested for effects of 1) bottom-water habitat conditions
on attributes of prey populations (midge larva body mass
and biomass density), and 2) habitat conditions and prey
attributes on predator–prey (yellow perch–midge larvae)
mass ratio. For predator–prey mass ratio (PPMR), we used
‘individual-link PPMRs’–mass of an individual perch di-
vided by mass of an individual midge in a perch stomach–
to minimize potential bias associated with averaging of
prey mass (Woodward and Warren 2007; Nakazawa et al.
2011). Further, we used a linear mixed-effects model to
account for 1) the unbalanced, hierarchical nature (non-
independence) of our field surveys (multiple prey items
ingested by individual fish collected on different survey
dates at the same station) (Zuur et al. 2009; Barnes et al.
2010), and 2) interannual and spatial variability in the onset
of thermal stratification and bottom-water oxygen deple-
tion (Table 1).

Midge larvae in the sediment

We tested for significance of fixed effects, bottom-water
habitat state (nominal: unstratified normoxia, stratified
normoxia, or stratified hypoxia) and mean temperature
in the hypolimnion (°C; for unstratified stations, mean
temperatures of the entire water column were calculat-
ed), on midge body mass (mg) and biomass density (g
m−2) as a response variable with survey station (n = 13)
as a random intercept. Midge biomass density was also
added as a fixed effect for the models with body mass as
a response variable to test for density dependence.

Perch–midge interactions

We tested if habitat conditions and prey attributes con-
tribute to variation in individual-level perch–midge
mass ratio; we tested for significance of four survey-
level fixed effects; 1) bottom-water habitat state, 2)
temperature, 3) midge density, and 4) perch biomass.
We evaluated the following full model for perch k at
station j (with survey station and perch as random
intercepts):

log10 PPMRjk
� � ¼ β1 � state j þ β2 � log10 tempj

� �
þ β3 � log10 dens j

� �þ β4 � log10 biomj
� �

þβ5 � state j � log10 tempj

� �
þ β6 � state j � log10 dens j

� �þ β7 � log10 tempj

� �
�

log10 dens j
� �

þ bj
S þ bkP

� �þ εjk
b j

S∼N 0;σ2
� �

; bkP∼N 0;σ2
� �

; εjk∼N 0;σ2
� �

where βs are fixed effect coefficients; PPMRjk is
perch: midge mass ratio for perch k at station j, statej,
temp

j
, densj, and biomj are bottom-water state, tem-

perature, midge density in the sediment, and perch
CPUE from the bottom trawl surveys (kg hr.−1) at site
j, bj

S and bk
P are normally distributed random effect

intercepts (jth station and kth fish ID, respectively)
with mean of zero and variance of σ2, and ɛjk is a
normally distributed error term with mean of zero and
variance of σ2. PPMRs may vary with the time of the
day (e.g., diel activities) or predator size (e.g., size-
dependent foraging efficiency). However, our prelim-
inary exploratory analysis showed that adding the
terms of sampling time of the day or perch mass was
not supported by our data and did not improve the

model fit (based on a difference in Deviance Informa-
tion Criterion orΔDIC ≥7, Spiegelhalter et al. (2002);
ΔDIC = 2.7 and 5.3, respectively); we thus did not
test further for these terms in model evaluation.

We followed the two-step protocol of Zuur et al.
(2009) to develop the linear mixed-effects models; we
first evaluated the model structure of random effects
(intercepts); station (n = 13) and individual fish ID
(n = 433) as random intercepts separately and in com-
bination (non-hierarchically and hierarchically struc-
tured) with ΔDIC ≥7 as a threshold (Spiegelhalter
et al. 2002). The model with the selected random effects
was subsequently evaluated for fixed effects. We evalu-
ated the model convergence for random effects and
fixed effects using restricted maximum likelihood
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and maximum likelihood, respectively (Zuur et al.
2009). The variance structures were evaluated visually
for homogeneity and normality with plots of residuals
and covariates. All the models were fit using a function,
lmer, of an R package, lme4 (ver. 1.1–12). As reference,
we also estimated pseudo-R2 for a model with varying
intercepts using a function, r.squaredGLMM, from an R
package, MuMIn (Nakagawa and Schielzeth 2013;
Johnson 2014). All the response variables were log10-
transformed; temperature and prey covariates were
log10-transformed and centered.

Results

Biomass density and body mass of midge larvae
in the sediment

Biomass density of midge larvae in the sediment
varied from 0.01 to 3.96 g m−2 and differed
among bottom-water habitat states. Under
normoxia, mean density was 2.5-fold greater when
stratified than when unstratified (0.25 vs. 0.10 g
m−2, respectively; Fig. 2a, Table 3). Further, mean
density was 1.9-fold greater under hypoxia than
stratified normoxia (0.47 vs. 0.25 g m−2, respec-
tively; Fig. 2a, Table 3). Mean bottom-water tem-
perature in central Lake Erie varied from 8.7 to
20.5 °C when stratified and from 9.0 to 23.9 °C
when unstratified during summers of 2005 and
2007 (Table 1). However, including the tempera-
ture term did not improve the model fit (Table 3).

Individual bodymass ofmidge larvae in the sediment
varied from 1.6 to 29.4 mg and differed among bottom-
water habitat states. Under normoxia, mean body mass
was 1.2-fold greater when unstratified than when strat-
ified (10.5 vs. 8.8 mg, respectively; Fig. 2b, Table 3).
Further, when stratified, mean body mass was 1.4-fold
greater under hypoxia than normoxia (12.1 vs. 8.8 mg,
respectively; Fig. 2b, Table 3). Mean body mass was
negatively correlated with bottom-water temperature
(ΔDIC = 13.3; Table 4). Moreover, including the inter-
action term, habitat state × temperature, improved the
model fit (ΔDIC = 20.7; Table 3), revealing that the
linear correlation between mean body mass and temper-
ature was stronger when stratified. Including the midge
density term did not improve the model fit (ΔDIC = 3.8;
Table 3).

Perch–midge body mass ratios

Individual body mass of midge larvae in yellow perch
stomachs varied from 2.0 to 14.2 mg with 29.9% of
total variation found within individual fish and 28.6%
among fish. Midge body mass in stomachs increased
with perch body mass (ΔDIC = 23.1) and differed
among bottom-water habitat states (ΔDIC = 11.4;
Fig. 3a–c, Table 4). Under normoxia, realized
perch–midge mass ratios were on average 1.3-fold
greater (perch consuming smaller midges) when un-
stratified than when stratified (3836:1 vs. 2894:1,
respectively; Fig. 4a, Table 4). Further, when strati-
fied, realized perch–midge mass ratios were 1.6-fold
greater under hypoxia than normoxia (4754:1 vs.
2894:1, respectively; Fig. 4a, Table 4). Perch–midge
mass ratios were positively correlated with bottom-
water temperature (ΔDIC = 44.7, Fig. 4b, Table 4);

Fig. 2 Biomass density (a) and body mass (b) of non-biting
midge (chironomid) larvae in the sediment under varying
bottom-water habitat states (unstratified normoxia, stratified
normoxia, and stratified hypoxia) in central Lake Erie. Circles
and error bars indicate mean ± 95% confidence intervals estimated
by the selected linear mixed-effects models with habitat state as a
fixed effect and station as a random intercept for biomass density
as a response variable or with habitat state and temperature as fixed
effects and station as a random intercept for body mass as a
response variable (Table 3). In (b), the temperature effect is con-
trolled by fixing at mean values across all surveys
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including the interaction term, habitat state × temper-
ature, did not improve the model fit (ΔDIC = 4.8).
Perch–midge mass ratios were also positively corre-
lated with midge density in the sediment (Table 5).
Further, including the interaction term, habitat state ×
midge density, improved the model fit (ΔDIC = 22.1;
Table 4), revealing that mean mass ratios were nega-
tively correlated with midge density under hypoxia,
whereas mean mass ratios were positively correlated
with midge density under normoxia (Fig. 4c). Includ-
ing the perch biomass term did not improve the model
fit (ΔDIC = 0.01, Table 5).

Discussion

Our study based on individual-level field observations
revealed that Lake Erie yellow perch largely maintained
their trophic relationships with non-biting midge larvae
in contracted benthic habitats through modified size-
mediated interactions after bottom-water dissolved ox-
ygen depletion during summer (Table 6). Bottom-water
hypoxia may directly and indirectly enhance or restrict
foraging by demersal predators (Pihl et al. 1992; Rahel
and Nutzman 1994; Taylor and Eggleston 2000), mod-
ulating trophic interactions and transfer efficiencies in

lake ecosystems (Schindler and Scheuerell 2002). In
Lake Erie, midge populations remained productive in
thermally stratified, hypoxic waters, becoming a domi-
nant prey base (midge larvae comprised up to ~70% of
zoobenthos biomass) for perch. Despite their high den-
sities, midge larvae also maintained their body size in
hypoxic water. In contrast, perch on average ingested
relatively smaller midges (but in higher numbers) in
hypoxic water, while prey size ingested by perch shrunk
less in areas with higher midge density. These findings
indicate that higher hypoxia tolerance of midge larvae
may allow them to maintain an abundant food supply to
perch, sustaining the perch–midge size-based link (al-
beit temporarily modified) in thermally stratified, hyp-
oxic water during summer.

Body size variation of Lake Erie midge larvae in the
sediment may be more strongly regulated by size-based
predation (indirectly) by demersal fishes including yel-
low perch responding to variable bottom water habitat
conditions. When bottom water was well-oxygenated,
midge larvae in the sediment attained larger body size in
unstratified (warmer) water than stratified (cooler) wa-
ter, independent of their density; however, their body
size variation was negatively correlated with thermal
variation in bottom water (Table 6). These seemingly
contradictory patterns may have resulted from an indi-
rect temperature effect, size-based predation by perch
and likely other demersal predators, onmidge body size.
Top-down regulation of prey body size structure can
occur in systems with high size-mediated predation
rates, as demonstrated in a whole-lake experiment by
Blumenshine et al. (2000). In Lake Erie, perch ingested
larger midge larvae (lower PPMRs) in stratified,
normoxic water than unstratified water (Table 6). Fur-
ther, PPMR variation was also positively correlated with
thermal variation in bottom water. Thermal stratification
may allow cool-water (and perhaps cold-water) preda-
tors such as yellow perch to conserve energy (lower
metabolic cost) and forage more efficiently in bottom
water (Levy 1990; Mehner 2012), ultimately promoting
size-biased predation effects on zoobenthos
(Blumenshine et al. 2000).

The size-based perch–midge link appears to persist in
oxygen-depleted bottom water. Despite severe hypoxia,
perch continued to consume large amounts (~85% of the
diet) of midges, likely through brief, frequent diving (a
‘foraging foray’) into bottom waters documented in
hydroacoustic surveys (Roberts et al. 2012). However,
relative prey size ingested by perch was up to ~64%

Table 3 Model selection results for linear mixed-effects models
with non-biting midge (chironomid) larva body mass and biomass
density in the sediment as response variables

Model DIC ΔDIC R2
m R2c

Midge larva biomass density

(random effect only: station) 280.2 14.2 0.000 0.714

habitat state 266.0 0.0 0.066 0.792

habitat state + temperature 264.6 1.4 0.076 0.798

Midge larva mass

(random effect only: station) 7383.7 170.9 0.000 0.289

habitat state 7376.2 163.4 0.003 0.263

habitat state + midge density 7380.0 167.2 0.006 0.332

habitat state + temperature 7233.5 20.7 0.232 0.584

habitat state + temperature
+ habitat state × temperature

7212.8 0.0 0.199 0.487

The models were evaluated using deviance information criterion
(DIC). Each covariate was added sequentially using stepwise
forward selection. DIC = deviance information criterion; ΔDIC
was recalculated as a difference in a DIC value from the most
supported model. R2

m = phsedo-R2 for fixed effects only; and
R2

c = phsedo-R2 for both fixed and random effects
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smaller (higher PPMRs) in stratified, hypoxic water than
stratified, normoxic water, whereas body size of midge
larvae in the sediment was 37% larger in hypoxic
water (Table 6). These reversed patterns may indi-
cate less efficient foraging by perch (Brante and
Hughes 2001; Shin et al. 2005) such as brief
forays into hypoxic water, allowing them to cap-
ture only prey near the sediment surface. Severe
hypoxia can restrict behaviors including foraging
(Kramer 1987; Rahel and Nutzman 1994). Possible
mechanisms involved in modified foraging by div-
ing predators in hypoxic water may include; 1)
reduced foraging duration–hypoxia can reduce the
time spent by predators (with increased swimming
speeds) in bottom water (Taylor et al. 2007;

Neuenfeldt et al. 2009); and 2) reduced foraging
efficiency–hypoxia may force predators to forage
less selectively (e.g., lower net energy gain, Taylor
et al. 2007). Such alternative foraging behaviors
also have been documented for benthic and pelagic
predators in other aquatic systems (Rahel and
Nutzman 1994; Mistri 2004; Seibel 2011). Preda-
tory marine crabs (Carcinus maenas and Thalamita
danae), for example, spent more time in handling
and selected smaller bivalve prey when temporar-
ily exposed to hypoxia (Brante and Hughes 2001;
Shin et al. 2005). Further studies on explicit mech-
anisms underlying foraging in hypoxic water (e.g.,
the number of and duration of dives by diving
predators) would help understand energetic

Fig. 3 Relationships between log10-transformed body mass of
central Lake Erie yellow perch (Perca flavescens) and non-biting
midge (chironomid) larvae consumed by perch. Triangles, circles,
and diamonds indicate observed mean midge mass ± standard
deviation in each fish stomach under different bottom-water

habitat states. Dash-dotted, solid, and dashed lines indicate the
selected linear mixed-effects model with habitat state (unstratified
normoxia, stratified normoxia, and stratified hypoxia, respective-
ly) as a fixed effect and station and fish ID as random intercepts:
(a) y = 0.76× – 2.36; (b) y = 0.76× – 2.25; and (c) y = 0.76× – 2.44

Table 4 Model selection results for linear mixed-effects models with body mass ratios of central Lake Erie yellow perch (Perca flavescens):
non-biting midge (chironomid) larvae (predator–prey mass ratio or PPMR) as a response variable

Model DIC ΔDIC R2
m R2c

(random effects only: station/ fish ID) 4448.0 106.1 0.000 0.532

habitat state 4433.3 91.4 0.028 0.526

habitat state + temperature 4388.6 46.7 0.293 0.716

habitat state + temperature + temperature × habitat state 4383.8 41.9 0.148 0.565

habitat state + temperature + midge density 4354.4 12.5 0.194 0.579

habitat state + temperature + midge density + perch biomass 4354.4 12.5 0.194 0.583

habitat state + temperature + midge density + temperature × midge density 4355.8 13.9 0.204 0.587

habitat state + temperature + midge density + habitat state × midge density 4341.9 0.0 0.213 0.609

Fixed effects tested include bottom-water habitat states, water temperature, midge biomass density, and perch biomass with hierarchically
structured random intercepts, station and fish ID. The models were evaluated using deviance information criterion (DIC). Each covariate was
added sequentially using stepwise forward selection. DIC = deviance information criterion;ΔDIC was recalculated as a difference in a DIC
value from the most supported model. R2 m = pseudo-R2 for fixed effects only; and R2

c = pseudo-R2 for both fixed and random effects
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tradeoffs in foraging in food-rich, but potentially
lethal waters (Scarbro 2014).

Density dependence may have played an indirect
role in a size-based perch–midge interaction in strat-
ified, hypoxic water. Although body size of midges in
the sediment varied independently of their density,
body size of midges ingested by perch varied with
midge density in the sediment (Table 6). Further, this
prey density-dependent predation by perch in hypoxic

water differed from perch in normoxic water; body
size of midges ingested by perch was positively cor-
related with midge density in hypoxic water, whereas
ingested midge body size was negatively correlated
with midge density in normoxic water. These con-
trasting patterns in size-mediated trophic interactions
may be shaped by spatial distributions of size-
structured prey populations under variable habitat
conditions (Macciusi and Baker 1991; Pihl et al.
1992; Kornijów 1997). Transient hypoxia may pro-
mote production of resilient zoobenthos such as
midges by releasing them from resource competition
and predation in eutrophic systems (Brodersen and
Quinlan 2006), allowing them to grow, survive, and
reproduce at higher rates (a ~ 10–20-fold increase in
biomass density in central Lake Erie). However, an
experimental study also has demonstrated that hyp-
oxia can induce upward movement within the sedi-
ment and heightened activities at the sediment–water
column interface by larger midge larvae (Irving et al.
2004), which normally reside in deeper layers of the
sediment (Panis et al. 1996). Although our sampling
method prevented us from examining midge vertical
distribution in the sediment (and thus midge size
ranges encountered by perch), a positive density de-
pendence in size-based predation of midges by perch
indicate greater density (crowding) may have ‘pro-
moted’ upward migration of larger midges in hypoxic
water. Such prey aggregation forced by habitat con-
traction could increase their detectability by predators

Table 5 Parameter estimates and associated statistics for the
selected linear mixed-effects model with body mass ratios of
central Lake Erie yellow perch (Perca flavescens): non-biting
midge (chironomid) larvae (predator–prey mass ratio or PPMR)
as a response variable

Fixed effects Estimate SE t
value

habitat state (normoxia) 3.552 0.128 27.83

habitat state (unstratified) 3.301 0.127 25.92

habitat state (hypoxia) 3.822 0.127 30.08

temperature 0.124 0.062 2.00

midge density 0.178 0.025 7.05

habitat state (hypoxia) × midge
density

−0.265 0.073 −3.62

habitat state (unstratified) × midge
density

0.025 0.215 0.12

Bottom-water habitat states, water temperature, and midge bio-
mass density were selected as fixed effects (see Table 4 for model
structure)

Fig. 4 Body mass ratios (log10-transformed) of central Lake Erie
yellow perch (Perca flavescens): non-biting midge (chironomid)
larvae ingested by perch under varying bottom-water habitat states
(unstratified normoxia, stratified normoxia, and stratified hypox-
ia), water temperature and midge biomass density. In a, circles and
error bars indicate mean ± 95% confidence intervals estimated by
the selected linear mixed-effects model. In (b) and (c), triangles,
circles, and diamonds indicate observedmean ± standard deviation
for survey-averaged fish under varying bottom-water habitat

states. In (b) and (c), dash-dotted black, solid blue, and dashed
red lines indicate the selected linear mixed-effects model with
habitat state (unstratified normoxia, stratified normoxia, and strat-
ified hypoxia, respectively), water temperature, and midge bio-
mass density as fixed effects and station and fish ID as random
intercepts (Table 4). In (b), the midge density effect in the model is
controlled by fixing at mean values across all surveys; and in (c),
the temperature effect is controlled by fixing at mean values across
all surveys
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and reduce search time in a stressful environment
(Rahel and Nutzman 1994; Aday et al. 2000). Prey
behavioral responses to hypoxia may thus partially
compensate for compromised foraging opportunities
of predators by migrating between microhabitats
(Rahel and Kolar 1990; Kolar and Rahel 1993). In
Lake Erie, increased vulnerability of productive
midge populations to perch predation (via vertical
shifts) may have maintained a predator–prey link in
stratified, hypoxic water, revealing plasticity of this
predator–prey system.

A hypoxia-driven increase in vulnerability to preda-
tion is shared by other zoobenthos (Pihl et al. 1992;
Kolar and Rahel 1993), zooplankton (Taylor and Rand
2003), and larval fish (Keister et al. 2000). Because of
limited mobility and obligate benthic life history stages,
zoobenthos often remain in hypoxic areas (Pihl et al.
1992; Rabalais et al. 2002; Craig et al. 2005) and be-
come more vulnerable to predation (Pihl et al. 1992;
Aday et al. 2000). Marine bivalves, for example, re-
spond to hypoxia by protruding their siphon above the
sediment surface (Seitz et al. 2003), increasing con-
sumption of their siphons by predators. Although

pelagic prey such as zooplankton and larval fish may
escape from hypoxia as dissolved oxygen concentration
progressively declines (Eby and Crowder 2002; Ludsin
et al. 2009), some may become more exposed to pelagic
predators (Costantini et al. 2008; Brandt et al. 2011).
Because bottom-water hypoxia forces sensitive prey out
of their dark bottom-water refugia into more illuminated
and oxygenated waters (Goto et al. 2012), pelagic pred-
ators (piscivores and planktivores) that feed by sight
may experience a short-term increase in prey encounter
rates and thus consumption rates (Taylor and Rand
2003; Vanderploeg et al. 2009).

Amplified predator–prey interactions in contracted
habitats also have been documented for other sources
of natural and human-induced disturbances in aquatic
ecosystems (Holt 1977; Domenici et al. 2007), in-
cluding dry seasons in tropical river floodplains
(Willis et al. 2005), droughts in temperate streams
(Dewson et al. 2007; Goto et al. 2015), and fragmen-
tation in tidal creeks (Layman et al. 2007). Under such
disturbances, predators, prey, or both may modify
their behaviors to minimize the risk of exposure to
stressors (e.g., excessive heat), which can ultimately

Table 6 Summary of expected and observed responses by central
Lake Erie non-biting midge (chironomid) larvae and yellow perch
(Perca flavescens) (midge biomass density, midge body mass, and
perch: midge predator–prey mass ratio or PPMR) to drivers tested
with linear mixed-effects models. Up triangles ( ) indicate an

increase in a response variable; down triangles ( ) indicate a
decrease in a response variable; and right triangles ( ) indicate
no effect on a response variable

Response Driver Expected effect Observed effect

midge density thermal stratification

hypoxia

temperature

midge body mass thermal stratification

hypoxia

midge density

temperature

perch: midge PPMR thermal stratification

hypoxia

temperature

midge density

perch biomass
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increase predator–prey encounter rates (Dewson et al.
2007; Domenici et al. 2007). Resulting changes in
their interactions may thus modulate top-down or
bottom-up effects in food webs and ultimately how
an ecosystem operates (Ives et al. 2005; Heithaus
et al. 2008; Frank et al. 2011).

Continued access to zoobenthos, abundant and energy-
rich food sources, during summer is vital for growth and
survival of demersal predators (Wu and Culver 1992;
Gopalan et al. 1998; Goto and Wallace 2010). Resilient
trophic coupling in the perch–midge system may further
suggest perch’s critical role as a benthic–pelagic coupler
(Schindler and Scheuerell 2002; Vander Zanden and
Vadeboncoeur 2002), sustaining productive fisheries in
frequently perturbed systems such as Lake Erie (Kraus
et al. 2015). Modified benthic–pelagic coupling may how-
ever have additional management implications. Altered
trait-mediated predator–prey interactions can cascade
through food webs, potentially effecting further conse-
quences (e.g., alternative energy pathways) in perturbed
ecosystems (Schmitz et al. 2004). Many trophic interac-
tions disrupted by transient disturbances such as summer
bottom-water hypoxia may modify nutrient recycling and
alter ecosystem productivity regimes (Österblom et al.
2007; Diaz and Rosenberg 2008; Scavia et al. 2014). With
large-scale environmental changes such as climate
warming and excessive land use, we may expect further
increases in spatial and temporal variation in bottom-water
oxygen depletion that may ultimately reshape benthic–
pelagic coupling (Baird et al. 2004; Long and Seitz
2008). Monitoring transient size-mediated predator–prey
interactions may therefore help the assessment of long-
term implications for ecosystem productivity and resource
sustainability in nutrient-enriched systems.
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