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Abstract
To support regional management planning decisions, and to protect human health and safety,
we developed a new statistical model that simulates the onset of seasonal ice cover along
the shoreline of a US National Park (the Apostle Islands National Lakeshore, or APIS). Our
model encodes relationships between different modes of climate variability and regional
ice cover from 1972 to 2015, and successfully simulates both the timing of ice onset and
the probability that ice cover might form at all in a particular winter season. We simulate
both of these endpoints using a novel combination of statistical hazard (or survival) and
beta regression models. Our analysis of coastal ice cover along the APIS reinforces findings
from previous research suggesting that the late 1990s signified a regime shift in climate
conditions across North America. Before this period, coastal ice cover conditions at the
APIS were often suitable for pedestrian access, while after this period coastal ice cover
at the APIS has been highly variable. Our new model accommodates this regime shift,
and provides a stepping stone towards a broad range of applications of similar models for
supporting regional management decisions in light of evolving climate conditions.

Keywords Coastal ice · Climate variability · Statistical model · Decision-making

1 Introduction

The maximum areal extent, and the timing of onset and retreat of seasonal ice cover across
Earth’s marine and fresh water bodies has been changing over the past century (Magnuson
et al. 2000; Comiso et al. 2008; Wang et al. 2012). These changes pose challenges to coastal
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and off-shore management agencies for which ice cover facilitates, or impedes, commercial
and recreational activities (Laidler et al. 2009; Smith and Stephenson 2013). Across the
Laurentian Great Lakes (Fig. 1), Earth’s largest lake system, winter ice cover provides a
migratory route for wildlife (Hebert 1998; Mlot 2015), can pose hazards for the shipping
industry (Millerd 2010), and is a critical component of the lake-atmosphere energy and
water flux dynamics that dictate lake effect snow severity (Notaro et al. 2015; Gronewold
et al. 2015; Fujisaki-Manome et al. 2017). Ice formation and retreat along the Great Lakes
shoreline is of particular importance to regional infrastructure planning and, given the length
of Great Lakes coastline (commonly referred to as the “third coast” of the USA), serves as
an ideal case study for research on relationships between modes of climate variability and
coastal physical processes.

Previously developed models for simulating Great Lakes ice cover range from simple to
complex, and span a variety of space and time scales. One-dimensional lakewide-average
thermodynamics models, for example, have been employed in operational seasonal water
supply forecasting for decades (Croley II and Assel 1994; Gronewold et al. 2011). Statistical
models (Assel 1991; Assel et al. 2004; Bai et al. 2015) and three-dimensional hydrodynamic
models (Fujisaki-Manome et al. 2013) have been used to simulate and forecast ice cover
across shorter time horizons. Other research has focused on multi-decadal projections and
simulations of ice cover change using regional climate models (Goyette et al. 2000; Xiao
et al. 2016). Importantly, most of the statistical models used to simulate Great Lakes ice
cover have been built on empirical relationships between modes of climate variability and
basin-scale seasonal maximum ice cover (Assel et al. 2000; Rodionov and Assel 2003;
Ghanbari and Bravo 2008; Bai et al. 2015). Recent studies, however, suggest that seasonal

Fig. 1 Map of the North American Great Lakes drainage basin (brown-shaded region) including major cities,
political boundaries, interbasin diversions, and interconnecting channels
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and interannual ice cover dynamics, and their relationship to climate patterns, can be highly
variable when assessed at finer spatial and temporal scales (Magnuson et al. 2000; Mason
et al. 2016).

Here, we collectively advance coastal ice modeling, statistical modeling, and climate
change research by developing a new model to simulate the seasonal onset of coastal ice
cover at regional scales, and apply it to an area managed by the National Park Service—the
Apostle Islands National Lakeshore (Krumenaker 2005, 2016). The Lakeshore (hereafter
referred to as APIS) is located in Wisconsin along the southwest shoreline of Lake Superior
(Fig. 2), the largest freshwater surface on Earth. The APIS includes 21 islands and a 20-km
stretch of mainland coastline, while covering a total area of roughly 280 km2.

The seasonal formation of ice within and along the caves in this area is a popular tourist
attraction, and there are periods in some winters when visitors can directly access the caves
by walking along the ice-covered lake shoreline. Changes in coastal ice cover areal extent
and thickness over the past two decades, however, have periodically limited access to the
caves while also making it challenging for managers to anticipate both “low-risk” ice con-
ditions (defined here as ice cover that can sustain high volumes of pedestrian traffic) and
the number of tourists that might visit the APIS; when ice caves form, there is a need for
additional staff.

More specifically, ice cover on Lake Superior and near the APIS formed with some
regularity prior to 1997 (Wang et al. 2012; Van Cleave et al. 2014). After 1997, however, ice
cover has been more sporadic. There have been several winters where ice cover was not at
any time a low risk for pedestrian access, and others (especially the winter of 2013–2014)
when ice onset and retreat were much earlier or later than usual (Assel et al. 2003; Clites
et al. 2014). Importantly, in 2014, prominent lake ice brought an unusually high number of
visitors to the APIS that were concentrated along the small portion of the shoreline where
the ice caves are located, posing a management challenge to APIS personnel.
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Fig. 2 Location map of the Apostle Islands National Lakeshore. Panel B represents the spatial domain of the
gridded ice cover data used in our study and indicates locations of the caves frequently accessed by tourists
along the mainland shoreline
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Previous research indicates that the exceptionally cold North American winters of 2014
and 2015 were related to the Arctic Oscillation (AO), or its regional manifestation, the North
Atlantic Oscillation (NAO). Much attention has been brought to the AO through research
(Liu et al. 2012; Francis and Vavrus 2012; Francis et al. 2017) suggesting its behavior might
be changing due to the rapid decline of Arctic sea ice and snow cover and, more generally,
to rapid changes in regional land and water surface characteristics (for further reading, see
Barnston and Livezey 1987).

This study addresses not only a widespread need for improved understanding of con-
nections between climatological drivers and coastal ice cover variability but also for
propagating those relationships into regional decision support tools. The latter need cat-
alyzed during recent interactions and planning workshops with APIS management and staff
(Star et al. 2015). These interactions led to subsequent questions about the potential to use
knowledge of modes of weather and climate variability to forecast the state of APIS shore-
line lake ice with sufficient lead time and skill, and to forewarn the need for additional
winter Park staff.

The primary goal of our study, then, was the development of a new model for potential
application by coastal management agencies (including the APIS) in planning for seasonal
ice cover variability that encodes relationships between monthly teleconnection indices each
fall (August through December), and ice cover dynamics in the following winter and early
spring months (January through June). A secondary goal was the introduction of a robust
framework for developing and testing models that is broadly applicable to areas around the
world with a need for more accurate simulations of seasonal coastal ice cover dynamics,
particularly in light of climate change. These models could be useful not only for supporting
safe pedestrian traffic on ice in coastal areas of the Great Lakes, but for large and small-craft
vessel navigation, fishing and hunting, and other human activities around the world (Laidler
et al. 2009).

2 Methods

2.1 Data

We began by collecting daily gridded ice cover data for all of the Great Lakes for the period
December 1972 (the beginning of the available data record) through May 2015 from the
National Oceanic and Atmospheric Administration (NOAA) Great Lakes Environmental
Research Laboratory (GLERL) Great Lakes Ice Atlas, and related suite of products (Assel
2003, 2005). Daily ice cover at each grid point is represented as an areal fraction, and we
calculated daily average ice cover for the area around the APIS ice caves (Fig. 2) using
the arithmetic average of the grids bounded by latitudes 46.9704◦ N and 46.8485◦ N and
longitudes 90.9392◦ W and 91.1363◦ W.

We then calculated the date of APIS ice onset in each year of the historical record, defined
as the first day on which the rolling 10-day average of ice cover, based on the NOAA-
GLERL data, exceeds 90%. This criterion is derived from discussions with representatives
from the APIS and their historical knowledge of the relationship between duration of surface
ice cover area, ice thickness and stability, and the suitability for pedestrian access. We select
90% as a threshold for stable ice cover in the NOAA-GLERL gridded data as a reasonable
reflection of the APIS management practices. Because solid ice cover rarely forms before
December in most regions of the Great Lakes, we represent the timing of ice onset as the
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number of days (yn) from December 1 to the day of ice onset. Hereafter, we refer to this
event as the onset of low-risk ice cover.

We obtained average monthly values of the AO, NAO, Pacific-North American Pat-
tern (PNA), Southern Oscillation Index (SOI), Pacific Decadal Oscillation (PDO), and El
Niño-Southern Oscillation (NINO3.4) from NOAA’s National Centers for Environmental
Information (NCEI) for each year from 1972 to 2015 (to coincide with the historical ice
cover record). From a meteorological perspective, these teleconnections divide into three
quasi-distinct time scales of variability. The AO, NAO, and PNA patterns vary on time scales
of days to weeks. The SOI and NINO3.4 vary on times scales of 2 to 7 years, and the PDO
is decadal (Perlwitz et al. 2017). From a spatial perspective, the AO and the NAO are more
likely than the other indices to indicate conditions local to APIS.

On an annual basis, for example, the AO is the strongest measure of temperature vari-
ability in the Northern Hemisphere; it is stronger in the winter than summer (see Hurrell
and Deser 2010). When the AO or NAO is in its negative phase, the polar vortex is relatively
weak, and the cold air isolated within the polar vortex is likely to be displaced away from
the North Pole towards the Great Lakes. That is, a negative phase of the AO or the NAO is
often associated with a cool temperature anomaly in the Great Lakes region. The PNA pat-
tern acts more as a guide, loosely focusing the paths of, especially, winter storms as they
move from the Pacific Ocean and across the high mountains of western North America.

We then assessed serial autocorrelation within and correlation between each of these
indices prior to model calibration. If we found two indices were highly correlated in a given
month (with a correlation coefficient greater than 0.65; for details, see Weisberg 2005), we
included only one of them in our model calibration. Similarly, if we found that a telecon-
nection index was autocorrelated across two or more months, we used only the earliest of
the autocorrelated monthly values for that index.

Other climate and environmental variables are potential predictors of seasonal ice cover
dynamics near the APIS (and other areas in the Great Lakes region) including, for example,
surface water temperatures, heat content, winter severity index, and cooling degree days in
the months preceding ice onset (Assel 1998; Rodionov and Assel 2003; Bai et al. 2015).
The goal of this study, however, was to assess the extent to which continental-scale modes
of climate variability alone serve as an adequate predictor of coastal ice cover at local and
regional scales. Findings of a significant relationship between climate indices and ice con-
ditions have important management implications not only for the Lake Superior shoreline
but for other regions as well. We view analysis of alternative predictor variables throughout
the Great Lakes, and other domains, as an area for future research.

2.2 Model description

Our model for simulating seasonal ice cover at the APIS was designed to meet three impor-
tant criteria closely aligned with the needs of regional stakeholders. First, because of the
increased variability in lake ice cover conditions over the past two decades, the model
needed to indicate the probability of any low-risk ice cover at the APIS in an upcoming win-
ter season. Second, the model needed to provide an estimation of the first day of low-risk
ice onset. Third, the model needed to allow APIS managers to make forecasts at different
times throughout the fall months preceding an upcoming winter tourist season.

To meet these criteria, we used statistical hazard (or survival) models because they are
typically applied to model duration (i.e., survival time) until an event (for related appli-
cations, see Therneau and Grambsch 2000; Read and Vogel 2016). Survival models are
particularly useful to our study because they can simulate both the probability of ice onset



130 Climatic Change (2019) 154:125–141

on each day of an ice season as well as the probability of ice cover occurring at all by the
end of an upcoming ice season. We modeled the number of days (yn

i ) from December 1 until
the onset of ice cover in season i using a Cox proportional hazards regression model and a
Weibull (parametric) survival regression model (Anderson and Gill 1982; Kalbfleisch and
Prentice 2011). We set September 1 (after the end of the ice season) as our censored date
and interpreted the hazard function h(t | x) as the instantaneous probability of solid ice at
time t (in days) between December 1 and September 1 of the following calendar year. For
the Cox proportional hazards model (hc), this function is as follows:

hc(t | x) = h0(t) exp{β1x1 + β2x2 + . . . + βjxj } (1)

where β1, β2, . . . , βj are regression coefficients and x1, x2, . . . , xj are teleconnection
indices. Similarly, the hazard function for the parametric model with Weibull response
variable (hw) is as follows:

hw(t | x) = γ θtγ−1 exp{β ′
1x1 + β ′

2x2 + . . . + β ′
j xj } (2)

with scale parameter γ and shape parameter θ .
In addition to the survival models, we developed a beta regression model for simulating

the probability of low-risk ice cover before the end of a winter season in which the maximum
10-day average ice areal extent in a season, when expressed as a fraction, is a beta random
variable ymax ∼ Be(μ, φ) with seasonal varying mean μ and constant (across all seasons)
precision φ. We modeled μ for each season through a logit link to a linear model with
seasonal teleconnection indices x as predictors:

μ = exp{β ′′
1 x1 + β ′′

2 x2 + . . . + β ′′
j xj }

1 + exp{β ′′
1 x1 + β ′′

2 x2 + . . . + β ′′
j xj }

We then used the beta model (described further in the next section) to simulate the proba-
bility distribution of a maximum 10-day average ice cover for each season, and to calculate
the probability that it exceeds 90%.

2.3 Model calibration and verification

After eliminating monthly teleconnection indices with significant serial auto- and cross-
correlation, we calibrated each model using conventional stepwise regression analyses
(Weisberg 2005) in the R statistical software environment (R core team 2017). All software
packages and functions referenced hereafter are used in R.

For the beta model, we initialized the regression procedure using a generalized additive
model with a beta link in the gamlss function. We then conducted an automated stepwise
regression (searching both forwards and backwards) with the stepGAIC function, which
uses generalized Akaike information criterion (GAIC) for model selection (Stasinopoulos
et al. 2017). We then further refined the model using a single manual selection procedure
in which we eliminated model coefficients from the stepGAIC model using conventional
p values as a selection criterion (rather than GAIC), and recalibrated the remaining coeffi-
cients using the betareg function (Cribari-Neto and Zeileis 2010). This approach yielded
a calibrated model that simulates deterministic values of maximum ice cover areal extent for
each season, along with estimates of parameters μ and φ. We used these results to calculate
the probability that ice cover areal extent in a given season exceeds the 90% threshold using
the pbeta(α, β) function with first shape parameter α = μ∗φ and second shape parameter
β = (1 − μ) ∗ φ (see Supporting Information for details).
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We acknowledge that, for a given data set, manual and automated stepwise regression
routines often lead to disparate model results depending on the stopping rules employed
and other variations in model and variable selection (Bendel and Afifi 1977). The methods
we employed here represent one particular approach to model selection, and we believe that
alternate model selection procedures should be explored in future research.

We conducted a similar calibration for the Cox and Weibull survival models using the
coxph and survreg functions, respectively, in the survival package (Therneau and
Grambsch 2000). The data for the calibration of the survival models includes the first day
(in days after December 1) of low-risk ice cover, and a binary variable indicating whether
or not any low-risk ice had formed by the censored date (i.e., September 1 of the following
calendar year). The coxph and survreg functions transformed these inputs into a hazard
ratio suitable for calibration of Eqs. 1 and 2.

For the Cox and Weibull models, we conducted a manual backwards stepwise regression
procedure. We began with all potential model coefficients and, after each step, eliminated
those with a p value greater than 0.05 (for further reading, see Wasserstein and Lazar 2016).
We continued this procedure until all remaining coefficients had a p value lower than 0.05.
The resulting models provide a probabilistic (i.e., with an expression of uncertainty) simu-
lation of the earliest date of ice onset. We used the lower 10% quantile of these simulations
as a conservative estimate of the earliest possible date of ice onset in a given season, and
recognize that different thresholds could be used depending on the preferences of the model
user.

We repeated the calibration routines for all three models using two separate ice cover
periods: one includes winter seasons from 1972–1973 through 1995–1996 and the other
includes winter seasons from 1996–1997 through 2014–2015. We based the timing of the
separation between these two periods on findings from previous research (Van Cleave et al.
2014), and on our own change point analysis (following Mason et al. 2016), that collectively
provide strong evidence for a significant difference in mean ice cover before and after 1997
(for details of our change point analysis, see the Supporting Information).

Our analysis therefore explicitly tests the hypothesis that the change in ice cover in the
late 1990s (Van Cleave et al. 2014; Mason et al. 2016) might warrant separate models for
pre- and post-1997 periods. For these six “split” models (two time periods for each of the
three models), we used the model structures (i.e., teleconnection indices) derived from the
regression analysis across the entire historical period, but updated coefficient values via
calibration using separate pre- and post-1997 time periods.

3 Results and discussion

Daily areal ice extent along the shoreline near the APIS caves during each ice season from
1973 to 2015 (Fig. 3) indicates significant interseasonal variability in the onset date and
duration of ice cover, and suggests that management actions, including restrictions on pedes-
trian access to the ice caves, might also differ depending on the definition of low-risk ice
cover. For example, we found, as noted in previous Great Lakes ice cover studies (Magnu-
son et al. 2000), that while the date of ice onset (Fig. 4) appears to be gradually progressing
later in each season from 1973 to 1997, there is low-risk ice cover at some point in each of
those seasons. Between 1997 and 2015, however, low-risk ice developed in only 11 seasons
and, for years when there was low-risk ice cover, the onset date appears to progress earlier
in each season over time. These ice cover onset changes, and the interseasonal variability
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Fig. 3 Observed daily ice cover (black line) and 10-day rolling average of daily ice cover (red) along the
APIS coastline (i.e., area in Fig. 2, panel B) for each ice season from 1973 through 2015

before and after the late 1990s, are consistent with previous studies indicating changes in
environmental and physical processes not only in the Great Lakes, but across other regions
as well (Assel 1998; Chavez et al. 2002; Navarrete et al. 2002; Scott and Marshall 2010;
Van Cleave et al. 2014; McCarthy et al. 2015).

We also found that, for several ice seasons (1998, 1999, 2010, 2012, 2013, and 2015),
daily ice cover areal extent exceeded or came very close to the 90% threshold, while the 10-
day rolling average in those years either exceeded the 90% threshold later in the season, or
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not at all. This finding underscores the sensitivity of APIS decision-making protocols, and
our model results, to the 90% threshold criteria.

Visual inspection of historical monthly teleconnections from August through December
(Fig. 5) indicates a noticeable shift in PDO in months preceding the winter ice season start-
ing in the late 1990s and persisting through 2014. Interestingly, the PDO also shifts in 2014
and 2015, suggesting it might be a strong predictor of the unusually high ice cover observed
across the Great Lakes region in those years (Clites et al. 2014).

Our analysis of correlation among teleconnection indices (see figures in Supporting
Information) indicates that PDO, SOI, and NINO3.4 are each strongly autocorrelated across
time, and therefore, only one of the monthly values for each of these three teleconnections in
the months preceding the ice season was evaluated in our regression analysis. This finding
is significant because it may allow decision-makers to use observed teleconnection information
as early as September in seasonal forecasting. This finding is also significant because it rep-
resents a departure from previous studies on Great Lakes seasonal ice forecasting in which
annual (rather than monthly) average teleconnection indices are used (Bai et al. 2015). The
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ability to make forecasts from monthly teleconnection indices prior to the ice season has
the potential to allow Park managers to better anticipate the extent of ice cover and improve
planning decisions.

Similarly, our analysis of cross-correlation between teleconnection indices for each
month from August through December (see figures in Supporting Information) indicates
that SOI and NINO3.4 are highly correlated in each month, and that NAO and AO are either
highly correlated (November and December) or moderately correlated (August, September,
and October) throughout the fall.

It is informative to note that while SOI and NINO3.4 are the strongest measures of global
variability on the 2- to 7-year scale (Perlwitz et al. 2017), the signals of seasonal weather
conditions associated with the SOI and NINO3.4 are weaker in the Great Lakes region
than in other parts of North America. Further, these indices are both measures of variability
in the tropical Pacific and influence the geographic distribution of the transport of heat
and humidity from the Tropics to middle and high latitudes; it is therefore not particularly
surprising that they are highly correlated.

The relationships between these teleconnection patterns are probabilistic and in no cases
deterministic. Therefore, there is an implicit challenge in extracting a signal from poten-
tially large amounts of variability. This challenge is made more difficult as we are now in
a time of rapidly warming temperatures. Indeed, our entire data record is from a time when
global surface air temperatures are increasing. The modes of variability may, themselves,
be changing. Even if the modes of variability remain stationary with time, the spatial and
temporal existence of air that is, historically, colder than average is decreasing.

A year-by-year analysis of simulations of ice cover onset date from the Cox and Weibull
models calibrated to the entire historical record indicates (Fig. 6) that there is much more
uncertainty in the Weibull model. Furthermore, in almost every year of our analysis, the
Weibull model indicates a nonzero probability of ice onset almost immediately after Decem-
ber 1. The Cox model, however, tends to have narrower and more accurate uncertainty
bounds around the actual ice onset date. In 2007, for example (Fig. 6), the Cox model indi-
cated that it would be very unlikely for ice to begin forming before early January, whereas
the Weibull model indicated ice might begin forming very soon after December 1. Similarly,
in 2007, the Cox model indicated that ice cover was almost certain to form by early March,
but the Weibull model indicated there was a small possibility it might not form until early
April. From a management perspective, the Weibull model (in 2007 and in nearly ever other
year) therefore provides an estimate of ice onset much earlier than both the Cox model and
the actual ice onset date.

Neither the Cox nor the Weibull model, however, accurately estimated the overall proba-
bility of ice cover in a given season relative to the beta model. In the seven seasons without
any low-risk ice cover (1998, 1999, 2002, 2006, 2010, 2012, and 2013), the beta probabil-
ity model estimated a higher probability of ice absence (i.e., lower probability of low-risk
ice cover) than the Cox and Weibull models and, in many of those years, estimated a prob-
ability of ice absence very close to 1.0. In 2010, for example (bottom right panel Fig. 6), a
year in which there was never low-risk ice cover, the Cox model estimated a probability of
a season with no ice cover close to 0.6, and the Weibull model estimated a probability close
to 0.2. The beta model, in 2010, estimated a probability of no low-risk ice cover very close
to 1.0. Similarly, in many years when low-risk ice cover was observed, the beta regression
model estimated a lower probability of ice absence than the Cox and Weibull models. This
finding suggests that the beta regression is a potentially suitable predictor of the probability
of ice cover in a given season, while the Cox model is most suitable for estimating when
that ice cover might first begin to form.
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However, additional insight is needed before these models should be considered for fore-
casting, and that insight can be derived from our assessment of the impacts of calibrating the
models separately to periods before and after the late 1990s regime shift. We found, more
specifically, that doing so led to a significant improvement in skill for simulating both the
date of ice onset and the probability of a season without any low-risk ice cover (Fig. 7). For
example, the Cox model, when calibrated to the entire period of record (upper-left panel,
Fig. 7), simulated ice onset dates that do not vary significantly from season to season. When
calibrated separately to pre- and post-1997 periods, however, the ice onset dates for the post-
1997 period (upper-right panel, Fig. 7) are quite different; the “split” Cox model simulated
an ice onset date still earlier than, but closer to, the actual onset date in 8 of the 11 years
after 1997 with low-risk seasonal ice cover.

For the other three post-1997 years, the “split” Cox model simulated ice onset dates
earlier than the non-split model (but still before the actual onset date) in one (2007), after
the observed onset date in one (2009) and, for 1 year (2006) did not yield a valid ice onset
date simulation. We suspect that the missing simulated ice onset date in 2006 is an artifact
of the model attempting to simulate a very late ice onset date, but not being able to do so
because of the parameters we set for censored data. Here (Fig. 7), we present results only
for the Cox model because it provided more accurate simulations than the Weibull model.
However, we did find (results not shown) that relative to the non-split model, the “split”
Weibull model also showed considerable improvements.

Differences between the split and non-split versions of the beta model for simulating
absence of ice cover across an entire season (bottom panels, Fig. 7) are more profound. The
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Fig. 7 (Top row) Simulated (red) and observed (black) ice cover onset dates for each ice season using the
Cox hazard model calibrated to the entire period of record (left column) and calibrated separately to pre- and
post-1997 periods (right column). (Bottom) Simulated (red) probability of ice absence in each season using
the beta model. Hollow red circles in all panels represent leave-one-out cross-validation simulations. Gray
vertical shaded regions are added for reference, and are aligned with years in which there was no low-risk
ice cover

“split” model, for example (bottom right panel, Fig. 7), simulated a probability of seasonal
ice absence very close to 1.0 for each of the years with no low-risk ice, and a probability
of seasonal ice absence very close to 0.0 for each of the years in which there was low-risk
ice. These results represent a significant improvement over the model when calibrated to
the entire period (bottom left, Fig. 7).

To address potential problems associated with overfitting, we conducted a leave-one-out
cross-validation procedure for all three models for both the entire time period and the post-
1997 period. These results, presented for the Cox and beta models (Fig. 7), indicate that
the “split” beta regression model is robust; in each year after 1997, the results of the model
validation are nearly identical to those from the model calibration. These findings suggest
that the post-1997 ice cover regime is explained well by our beta model, and that it could
potentially be used in real-world forecasting by the APIS. The validation results for the Cox
model are also robust, but not so much as the beta model; in the 11 seasons after 1997 in
which low-risk ice cover formed, the validation results for the Cox model are very close to
the calibration results in all but two.

Finally, an assessment of the model coefficients selected for each of the three models
(Table 1) indicates that August NAO is the most consistent predictor of ice cover response.
This is not particularly surprising, given that August NAO appears to have shifted in the
late 1990s (Fig. 5), coinciding with the shift in ice cover at the APIS. Our results also
indicate that the Cox model relies on three seasonal indices, and that simulations could
potentially be made earlier in the fall season using only August indices—understanding the
extent to which doing so might lead to loss of skill is an area for future research. While the
beta regression model requires a relatively high number of predictor variables, the results
of our cross-validation analysis indicate that, at least at seasonal time scales, overfitting is
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Table 1 Summary of model variables and coefficients in our regression analysis

Gray cells correspond to teleconnection indices not included in our model due to cross- or autocorrelation.
Empty white cells correspond to variables that were evaluated, but for which the corresponding regression
model coefficient was determined to be insignificant. White cells with a dot or square indicate that a coef-
ficient was significant for the corresponding variable (dot) or the squared value of the variable (square),
or both

not a significant problem. For further details on the model coefficients, see the Supporting
Information.

4 Conclusions

Through an analysis of coastal ice cover variability at a National Park, we have devel-
oped a new statistical model that serves as a stepping stone towards improving seasonal ice
cover forecasting and an increased level of preparedness for APIS management and staff.
Novel aspects of our approach include the use of hazard (survival) models to simulate the
date of seasonal ice onset, and the use of a beta regression model to simulate the proba-
bility that low-risk ice cover might occur (or not occur) at any point in a season. We have
been informed through several iterations of this research by APIS management and staff.
This iterative process helped define and refine model parameters and predictive variables.
Though the model has yet to be exercised in real-world applications, our results suggest it
has predictive skill. Hence, we look forward to evaluating the model’s usability, with usabil-
ity ultimately defined by the decision-makers at the APIS. The engagement process between
the partners in this research will be described elsewhere.

A representative simulation from our final composite model (Fig. 8) underscores the ben-
efits of our approach. The advancements represented by our work are particularly important
given that ice cover in coastal regions of the Great Lakes, and elsewhere, has been highly
variable over the past two decades, and that many conventional statistical models do not
carefully align the selection of a probability density function with the corresponding model
response variable. More importantly, our results may help serve as a basis for improving
management decisions at the APIS; in nearly every year in the study, and particularly in
years after 1998, our model (had it been used over the past few decades) could have added
value to the decision-making process by indicating that the onset of ice might have either
been delayed relative to the long-term average date, or that it might not have occurred at all.

Our findings also indicate that a beta regression model using teleconnection indices as
predictors can estimate the probability of seasonal ice cover with high skill, and that a Cox
survival model (with similar predictors) can estimate the timing of ice onset with reasonable
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Fig. 8 Model results combining the simulated probability of low-risk ice cover in a given season (from the
beta model), and the simulated earliest possible date of low-risk ice (from the Cox model). Black dots indicate
the date of low-risk ice onset based on historical NOAA-GLERL data; absence of a black dot for a particular
year indicates that there was no ice cover suitable for pedestrian access according to NOAA-GLERL data.
Gray vertical segments are drawn between the simulated first date of low-risk ice and the historical date of
low-risk ice onset. If the simulated onset date is before the historical onset date, the segment is solid; if after,
the segment is dashed. Seasons with a simulated low probability of low-risk ice cover are represented as
hollow red circles, and are positioned vertically at the date (if low-risk ice were to form) of ice onset based
on the Cox model

skill. Dividing the model into pre- and post-1997 periods led to improvements in skill,
and we suggest users of our model utilize this finding while also continuously updating
model coefficients to determine if other significant change points evolve. These findings
indicate promise for use of regression-based models in other ice onset simulation problems
and warrant further research using alternate predictor variables that might provide a more
localized representation of drivers of ice cover. We also note that separate models could
be used to improve simulation and forecasting of ice break-up at the end of each season;
APIS management and staff have indicated that these events (and the meteorological and
hydrodynamic phenomena the drive them) are a cause for more urgent safety considerations,
though are perhaps less predictable.

Our statistical analysis has brought renewed attention to regional impacts of the NAO
and PDO, and underscores the controversy surrounding research on changes in these modes
of variability as the planet warms (Trenberth and Fasullo 2013; England et al. 2014). Of
special focus in recent research is the influence of sea ice and snow cover decline in the
high Arctic (Francis and Vavrus 2012; Liu et al. 2012; Francis et al. 2017).

The PDO, specifically, is less well described and less well understood than the other
indices used here (Deser et al. 2012). However, as with the other indices, the phase of the
PDO suggests preferential geographical focusing of atmospheric wave patterns that influ-
ence both temperature anomalies on seasonal time scales, and the propagation of winter
storms as they transport heat from the west and south to the north and east. Our results sug-
gest that information from each of these time scales (i.e., days to weeks, 2 to 7 years, and
decadal) have quantitative information about ice cover at the APIS. While placing our sta-
tistical results into broader geographic contexts is beyond the scope of this study, the results
do suggest that scenarios of plausible futures to benefit planning for changes in lake ice (and
other parameters) need to consider these modes of behavior and how they might change.
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Finally, rather than presenting climate change in the Great Lakes as either a persistent
trend or even a sudden incremental change, the observed non-stationarity of surface param-
eters both locally (i.e., on the Great Lakes) and regionally (i.e., in the Arctic) suggests a
future punctuated by high variability (Briley et al. 2017; Gronewold and Rood 2019).
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