PO24A-2925 Meteotsunamis in the Great Lakes and Investigation
w M into Recent Events on Lake Erie and Lake Superior

Eric J. Anderson!, Adam J. Bechle?, Chin H. Wu?, Greg E. Mann3, David J. Schwab?, Kirk Lombardy”

1. NOAA Great Lakes Environmental Research Laboratory (GLERL), Ann Arbor, Michigan; 2. Civil & Environmental Engineering, University of Wisconsin-Madison; 3. NOAA/NWS Detroit; 4. Water Center, University of Michigan; 5. NOAA/NWS Cleveland GLER%

Background Lake Erie 2012

On 27 May 2012, atmospheric conditions gave rise to two convective systems that generated a series of
waves in the meteotsunami band on Lake Erie [Fig. 4, 5]. The resulting waves swept three swimmers a
0.5 mi offshore, inundated a marina, and may have led to a capsized boat along the southern shoreline.
Analysis of radial velocities from a nearby radar tower in combination with coastal meteorological

_ observation indicates that the convective systems produced a series of outflow bands that were the
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oscillations: ikely atmospheric cause of the meteotsunami [Fig. 4].
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. _' * Great Lakes meteotsunamis driven by complex and linear convective storms

Meteotsunami Occurrence

[Fig. 2a] 4L Toled i * Meteotsunami-inducing storms can move undetected through observation networks
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 Advanced weather models can resolve spatio-temporal features of meteotsunami-inducing storms

Fi o 4: Radial velocity observations illustrate three distinct bands of FI o 5: Observed water levels at southern Lake ) ) )
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outflows as a result of the storm fronts. Band 1 (top), moving at 14 m/s  Erie gauges, high-pass filtered for meteotsunami . .
contains 3 waves with a period of 5 minutes. Band 2 (middle) contains one frequency band. Beach goers impacted near Fairport, OH * Next-Generation NOAA GLOFS models use HRRR forcing
Complex outflow wave traveling at 19 m/s, period 6 minutes. Band 3 (bottom) just after 22:00 GMT.
Historic Events ’ contains 5 outflow waves, traveling at 17 m/s, with periods of 5 minutes.
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L In order to explain the processes that led to meteotsunami generation, we model the hydrodynamic pem-nsula of Michigan and along the southern s.hore of Lake Superior [_F'g' 10], producing a sharp wise
5 BicloNs response to three meteorological forcing scenarios: (i) the reconstructed atmospheric disturbance from |n.wmd speed (> 10 m/s) and drop in a.tmospherlc pressure (>0.2 mb/min) at the SERIT end of the lake
— AGW radar analysis, (ii) simulated conditions from a 1-km WRF model, and (iii) interpolated meteorological [F.|g. 1_1]° The storm generated a 70'”?'”“'59 Wave that excited a 4-hour mode in Wh!teﬁsh Bay [Fig. 12],
o conditions from the NOAA Great Lakes Coastal Forecasting System (GLCFS) [Fig. 6, 71. with displacements close to 1 meter, inundating the shores on the east end of Superior.
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