Reconstructing Evaporation over Lake Erie During the Historic November 2014 Lake Effect Snow Event

Lindsay Fitzpatrick1, Ayumi Fujisaki-Manome2,3, Andrew Gronewold2, Eric Anderson2, Chris Spence2, Ajiquan Chen4, Changliang Shao2, David Wright1, Brent Lofgren2, David Schwab3
1Cooperative Institute for Great Lakes Research, 2Great Lakes Environmental Research Laboratory, 3University of Michigan, 4Michigan State University, 5Environment and Climate Change Canada

Introduction
• The purpose of this study was to assess how state-of-the-art numerical models perform in simulating turbulent heat fluxes over the Great Lakes, which is tied to evaporation.

Method
Water vapor budget equation:
\[P = E - \frac{dQ}{dt} \]
where \(P \) is precipitation, \(E \) is evaporation, \(F_v \) is divergence of water vapor and \(dQ/dt \) is the change in water vapor mass over time.

<table>
<thead>
<tr>
<th>Figure 1</th>
<th>Model</th>
<th>Flux Algorithms</th>
<th>Meteorological Forcings</th>
<th>Resolution / Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVCOM</td>
<td>Water vapor budget, Flux-Volume, Community Model</td>
<td>[FVCOM reference text]</td>
<td>[FVCOM reference text]</td>
<td>[FVCOM resolution text]</td>
</tr>
<tr>
<td>NAM</td>
<td>North American Mesoscale Forecast System</td>
<td>[NAM reference text]</td>
<td>[NAM reference text]</td>
<td>[NAM resolution text]</td>
</tr>
<tr>
<td>LITM</td>
<td>Large Lake Thermodynamic Model</td>
<td>[LITM reference text]</td>
<td>[LITM reference text]</td>
<td>[LITM resolution text]</td>
</tr>
</tbody>
</table>

• Heat fluxes were reconstructed using nine FVCOM model runs.

• Simulated heat fluxes were validated at two eddy covariance stations: Long Point Lighthouse and the Toledo crib intake (Perms2).

• Meteorological forcing elements were validated using observational data from three buoy sites (Fig. 3a-c).

• 3D mean water temperature was calculated to show corresponding lake heat content (Fig. 3d).

• Observational data from SNODAS shows an increase of SWE along the east of Lake Erie during the duration of the LES event.

• These increases were somewhat captured by the CFSv2 and NAM but both missed the intensity observed in the Buffalo area.

Analysis
• All the model runs captured the sharp rise in LE and H on the 17th.

• NAM and CFSv2 significantly overestimated, likely due to their coarser spatial resolution.

• Lake-wide LE and H averages were calculated across Lake Erie and translated into cumulative evaporation.

Conclusion
• The FVCOM-simulated LE and H agreed with direct flux measurements better than other models.

• This study emphasized the importance of accurate simulation of turbulent heat fluxes to better predict these intense LES events in the Great Lakes region.

Acknowledgements & References
This work is supported by the National Oceanic and Atmospheric Administration (NOAA) Coastal Storms Program (CSP).