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temperature cET o ‘ m N 120 results on March 5, 2015 and the second row (e,f.g,h) shows the results
would be a s ICe EXtent and V0|ume "Jan Feb Mar Apr May Jan Feb Mar Apr May on March 5, 2016. The results from Expt. 3 are not included, as they are
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Governing equations Primitive equations they are nearly identical to those in Expt. 2 oriented observations are needed for over-lake precipitation, snow cover, albedo, and ice thickness to reduce
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