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ABSTRACT
The North American Great Lakes constitute the largest freshwater surface in the 
world. Beginning in the late 1990s – a period that commenced with a strong El Niño 
event – the Great Lakes experienced a regime shift in winter ice cover and summer 
water temperatures that resulted in higher summer evaporation rates, followed 
shortly thereafter by a dramatic decline in water levels. Recent research suggests 
that evaporation rates over the lakes have remained high since then, due primarily 
to warmer summer water temperatures and an earlier start to the evaporation 
season. On the other hand, cold, high-ice winters such as 2013-14 cause occasional 
deviations from this trend, highlighting the large interannual variability in the Great 
Lakes system and the continued need for long-term observations. A growing ensemble 
of in situ measurements – including offshore eddy flux towers, buoy-based sensors, 
and vessel-based platforms – are being deployed through an ongoing bi-national 
collaboration to reduce uncertainties in the Great Lakes water balance, provide a 
more robust basis for short- and long-term projections, and fill a significant gap in 
over-lake flux measurements and related meteorological data. This collaboration, 
currently referred to as the Great Lakes Evaporation Network (GLEN), was initiated 
in response to the need for improved estimates of Great Lakes evaporation and is 
intended to be of utility to a wide range of applied and basic research needs. 
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Seven flux sites are in operation on the Great Lakes (Figure 1), with most sites providing real-time data 
and imagery (Figure 2). Eddy covariance and energy balance instrumentation is shown below (Figure 
3), with three sites (Stannard Rock, Granite Island, and Toledo) providing continuous measurements 
of CO2 concentration and fluxes. Additional buoy-based deployments are being tested,with ship-based 
platforms planned for 2015 (Figure 4).

Figure 4. ReCON buoy deployed in 
Lake Erie, near Cleveland, in June 
2014. Instrumentation includes a net 
radiometer sensor and temperature/
relative humidity sensor for lake 
evaporation estimates (above 
left and right). Eddy-covariance 
instrumentation being tested 
at NOAA Boulder Atmospheric 
Observatory (BAO) in summer 2014 
(below right).

Figure 1. Location of 
evaporation stations.
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Figure 2.

Figure 3.
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Time series of annual-average climate and hydrological variables 
for Lake Superior (light colors) and Lake Michigan-Huron (dark colors) 
reflecting long-term trends and abrupt shifts in surface water temperature 
(blue lines) and over-lake evaporation (red lines). These factors, combined 
with human intervention (including dredging of channels connecting the 
Great Lakes) contribute to recent record low water levels on both lake 
systems (green lines). Vertical gray band indicates approximate period of 
1997-1998 El Niño. Adapted from Gronewold and Stow [2014].

︎Areal extent of daily ice cover (blue columns) and average annual lake-
wide surface water temperature (SWT; red line) on Lake Superior from 
1972 to 2014. Each column corresponds to the ‘ice season’ for given 
calendar year. The darkest shades of blue across all columns indicate 
ice cover near 100%, while the lightest shades of blue indicate ice 
cover near 10%. Ice cover and SWT data are from the NOAA Great Lakes 
ice atlas project [Assel, 2005; Wang et al., 2012] and the NOAA Lake 
Thermodynamics Model [Croley II and Assel, 1994], respectively. Figure 
adapted from Clites et al. [2014]


