AN EQUILIBRIUM MODEL FOR THE PARTITIONING OF SYNTHETIC ORGANIC COMPOUNDS INCORPORATING FIRST-ORDER DECOMPOSITION

B. J. Eadie
M. J. McCormick
C. Rice
P. LeVon
M. Simmons

Great Lakes Environmental Research Laboratory
Ann Arbor, Michigan
October 1981
NOTICE

Mention of a commercial company or product does not constitute an endorsement by NOM Environmental Research Laboratories. Use for publicity or advertising purposes of information from this publication concerning proprietary products or the tests of such products is not authorized.
CONTENTS

Abstract 1
1. INTRODUCTION 1
2. THE EQUILIBRIUM MODEL 1
3. INCORPORATING DECOMPOSITION 4
4. DEFINING THE ECOSYSTEM 4
5. THE MODEL'S OPERATION 5
 5.1 Model Runs 6
 5.2 The Model Applied to DDT 6
 5.3 The Model Applied to PCB's 8
 5.4 Microbial Degradation 12
6. RESULTS 16
7. ACKNOWLEDGMENTS 22
8. REFERENCES 23
9. Appendix--PROGRAM OUTPUT 25
FIGURES

1. Model output of DDT concentrations in fish, biota, and sediments. 7

2. DDT concentrations. 9

3. DDT loss rates. 9

4. Isomeric composition of commercially available Aroclors®. 10

5. a) PCB mixtures in biota using the low rates in table 2. 17
 b) PCB mixtures in sediments for the same run.

6. a) PCB mixtures in biota using the high rates in table 2. 18
 b) PCB mixtures in sediments for the same run.

7. Total PCB's in Lake Michigan fish. 20

8. PCB loss rates from the summer scenario (figure 6). a) Aroclor® 1242, b) Aroclor® 1254, and c) Aroclor® 1260. 21
1. Input parameters for DDT model. .. 7
2. Input parameters for PCB model. 11
3. Laboratory microbial decomposition of PCB (per day). 14
AN EQUILIBRIUM MODEL FOR THE PARTITIONING OF SYNTHETIC ORGANIC COMPOUNDS INCORPORATING FIRST-ORDER DECOMPOSITION.

B. J. Eadie, M. J. McCormick, C. Rice, P. LeVon, and M. Simmons

A simple equilibrium model incorporating several first-order decomposition pathways has been calibrated for DDT and PCB mixtures in a 1-m ecosystem with the characteristics of Lake Michigan. This exercise has revealed the weakness in currently available process-rate information. The model, as constructed, yields some valuable insights into the environmental pathways of hydrophobic organic contaminants in aquatic ecosystems.

1. INTRODUCTION

A previous report (Eadie, 1981) described a model based on the concept of fugacity, which predicted the equilibrium distribution of hydrophobic organic contaminants in aquatic ecosystems. This model did not contain decomposition and as such could only describe a static ecosystem. Although many synthetic organic compounds are designed and used because of their stability, they are subject to multiple environmental decomposition pathways, such as photolysis, biological decomposition, and chemical oxidation. These, along with physical processes, such as outflow and sediment burial, combine to remove the contaminant from an ecosystem. The obvious question to ask of a model is how long will it be before the contaminant concentration drops below a specified level.

There are several ways to address such questions; the approach basically comes down to the level of detail required and the level of information available. The latter is the constraining factor in the development of ecosystem models. This report describes a simplified approach in which all transformations are handled as first order with respect to contaminant concentration and that provides useful insight into the fates of synthetic organic compounds in well-mixed aquatic systems.

2. THE EQUILIBRIUM MODEL

The model, which is based on the fugacity concept described in detail elsewhere (Mackay, 1979; Eadie. 1981). assumes all compartments are in

*GLERL Contribution No. 266.
equilibrium, but allows input and transformations. Briefly, the model calculates the fugacity or escaping tendency of the contaminant within each ecosystem compartment. At equilibrium, the fugacities in all compartments are equal. At the low concentrations of contaminant encountered, fugacity \(f \) is proportional to concentration \(C \),

\[
c = fZ, \quad (1)
\]

where \(Z \) is the fugacity capacity.

At equilibrium

\[
f_1 = f_2 = \ldots = f_i, \quad i = \text{number of compartments, and}
\]

the total mass in the system \(M \) is

\[
M = \sum_i V_i Z_i
\]

where \(V_i \) = volume of the \(i \)th compartment. Then from \((1) \)

\[
M = \sum_i f_i Z_i V_i = f_i Z_i V_i Z_i
\]

thus

\[
f_i = M / \sum_i V_i Z_i
\]

and

\[
M_i = f_i V_i Z_i
\]
where \(M_i \) is the contaminant mass in the \(i \)th compartment. The concentration in the \(i \)th compartment is

\[
C_i = f_i Z_i.
\]

The fugacity capacity \((Z)\) values for each compartment are calculated as follows:

- **Vapor phases:**
 \[P_V = nRT\] ideal gas
 \[F_V = nRT\] at low concentration
 \[C_V = Z nRT\] from (1)
 \[z = 1/RT\] from \(CV = n \)
 \[R = 82 \times 10^{-6}\]
 \[T\] is Kelvin temperature

- **Liquid phases:**
 \[H = P/C\] Henry’s constant
 \[H = f/C\] at low concentration
 \[z = 1/H\] from (1)

- **Sorbed phases:** \(Z = K_p/H \),

where \(K_p \) = equilibrium partition coefficient, which is estimated, in this model, from the solubility of the contaminant and the organic content of the substrate as follows:

\[
\log K_{OC} = 4.75 - 0.70 \log s
\]

where \(S \) = solubility in \(\mumol/L \) and \(K_p = K_{OC} \times \% \) substrate organic carbon/100.

- **Fish:** \(Z = 6 \times \) bioconcentration factor/B
 \[\log BCF = 3.5 - 0.54 \log s\]
 factor of 6 converts wet weight to dry weight.

Conceptually, the water column is divided into two parts and the equilibrium distribution is calculated twice each year, representing the stratified (no mixing) and unstratified (complete mixing) periods.

For more detail on these calculations, see Mackay (1979) and Eadie (1981).
3. INCORPORATING DECOMPOSITION

A more realistic model is constructed by including decomposition processes (photolysis, biolysis), settling, and burial in the fugacity model. All of the removal mechanisms are approximated as first-order reactions. The sum of the first-order rates for each compartment \((i)\), period \((j)\) is:

\[
K_{ij} = \sum_{k=1}^{n} K_{i,j,k}, \quad n = \text{number of processes.}
\]

Thus the total removal rate from compartment \(i\) is:

\[
V_i C_{i,j} K_{i,j} \text{ mol/half year.}
\]

4. DEFINING THE ECOSYSTEM

For the purposes of initial analyses and flexibility, the ecosystem will represent a \(1-m^2\), \(100-m\)-deep basin with the biological and sedimentary characteristics of lake Michigan.

<table>
<thead>
<tr>
<th>Ecosystem compartment</th>
<th>Volume ((m^3))</th>
<th>comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmosphere</td>
<td>(10^4)</td>
<td>10 km thick</td>
</tr>
<tr>
<td>Epilimnion</td>
<td>25</td>
<td>25 m deep</td>
</tr>
<tr>
<td>Hypolimnion</td>
<td>75</td>
<td>75 m deep</td>
</tr>
<tr>
<td>Detritus</td>
<td>(1.5 \times 10^{-4})</td>
<td>1.5 ppm; 10% organic order</td>
</tr>
<tr>
<td>Biota</td>
<td>(5 \times 10^{-6})</td>
<td>50 mg/m(^3); 40% organic order</td>
</tr>
<tr>
<td>Sediments</td>
<td>(2 \times 10^{-2})</td>
<td>2 cm mixed; 2% organic order</td>
</tr>
<tr>
<td>Fish</td>
<td>(2 \times 10^{-7})</td>
<td></td>
</tr>
</tbody>
</table>

The semiannual time steps represent a cold, well-mixed system (temperatures \(=4^\circ C\)) and a stratified condition with an epilimnion temperature of \(20^\circ C\) and hypolimnion temperature held at \(4^\circ C\). A caveat in this conceptual framework is that the sediments and hypolimnion are considered to be in equilibrium with the epilimnion and atmosphere during the stratified period when it is well known that transport through the thermocline region is small. The effect of this will be discussed later.
5. THE MODEL'S OPERATION

Graphically, the model runs as follows:

Thus, at the end of each time step, the contaminant in each compartment has been perturbed from equilibrium by decomposition (and accumulation). For example, the final mass in the sediment is:

\[M_{\text{Sed}} = M_{\text{Sed}}^{\text{eq}} - M(\text{Biolysis} + \text{Photolysis} + \text{Burial}) + M_{\text{Settling}} \]

Load information for trace organic contaminants is very sparse. For the model runs described in this report, loads were assumed to slowly increase for 10-15 years, level off for a period of time, and then decline rapidly. The form of this function is
\[\text{LOAD} = t^2(c_1 - c_2t) \]

where \(t \) = time.

By adjusting \(c_1 \) and \(c_2 \), the loading function can be altered to conform to the limited data available.

Detritus settling is set at \(\sim 0.3 \) m/day (Chambers and Eadie, 1981); thus, one-half of the detritus mass enters the sediment each time step and an equivalent mass of sediment is buried, leaving the mixed layer constant. For this model, the detritus mass is renewed each time step, keeping all compartment volumes constant. At the end of each time step, a mass balance calculation is made to warn of any internal inconsistencies.

5.1 Model Runs

The model was run for DDT and a mixture of PCB's as Aroclors. The results are presented below. In the graphical output, winter conditions imply that the epilimnion was kept at \(4^\circ \)C for all time steps and that microbial decomposition was one-quarter and photolysis one-half of the summer case. These winter/summer scenarios were designed to approximately span the range of decomposition rates in the literature. When the time steps were alternated between winter and summer conditions, the increase in solubility and vapor pressure at the higher temperatures strongly affected the distribution as shown in figure 1.

The local maxima in the sediments and biota are the winter values. The model predicts an epilimnetic depletion of contaminant that can be tested with a relatively modest field effort, currently being planned.

5.2 The Model Applied to DDT

DDT research is almost out of vogue; however, after the large amount of money spent, some relatively basic information regarding the decomposition of the compound is on shaky ground. There is no clear information on loads; thus the model input was calibrated to concentrations reported in bloater chubs for Lake Michigan (International Joint Commission (IJC), 1979). Information on solubility and vapor pressure as a function of temperature was not found; a difference of 50 percent was assumed between \(4^\circ \) and \(20^\circ \)C. This is less of a range than for many similar halogenated aromatic hydrocarbons. The values used in the model are listed in table 1.
Figure 1.--Model output of DDT concentrations in fish, biota, and sediments. The sawtooth effect is caused by alternating winter and summer conditions in the model.

Table 1.--Input parameters for DDT model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>4°C (Winter)</th>
<th>20°C (Summer)</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solubility (g m⁻³)</td>
<td>0.8 x 10⁻³</td>
<td>1.2 x 10⁻³</td>
<td>1</td>
</tr>
<tr>
<td>Vapor pressure (mm Hg)</td>
<td>0.8 x 10⁻⁷</td>
<td>1.6 x 10⁻⁷</td>
<td>1</td>
</tr>
<tr>
<td>Photolysis rate (0.5 yr⁻¹)</td>
<td>0.9 x 10⁻³</td>
<td>1.8 x 10⁻³</td>
<td>2</td>
</tr>
<tr>
<td>Biolysis rate (0.5 yr⁻¹)</td>
<td>0.06</td>
<td>0.24</td>
<td>2</td>
</tr>
<tr>
<td>Burial rate (0.5 yr⁻¹)</td>
<td></td>
<td>0.00525</td>
<td>3</td>
</tr>
</tbody>
</table>

1) Solubilities, for 20°C, are currently accepted as best values within the range reported in the literature.

2) Rates are for the epilimnion; photolysis taken from Wolfe et al. (1977), biolysis rates from Lee and Ryan (1979; ~ 0.1 per half year) and Pefaender and Alexander (1972; 0.05-0.5 per half year).

3) Burial rate is calculated from mass flux rates of 0.7 g m⁻² day (Chambers and Eadie, 1981), a detritus concentration of 1.5 g m⁻³, and a constant mixed sediment thickness of 2 cm.
The DDT input \((I = 2 \times 10^{-3} \times (1.2 \times 10^{-3}(TS)^2 - 1.6 \times 10^{-5}(TS)^3)) \), where \(I \) is in moles and \(TS \) is the time step, increased for approximately 30 years, then declined rapidly, with zero input for the last 15 years. (By year 33, the input was near zero, equivalent in this calibration to 1970, when production was stopped.) Figure 2 illustrates predicted concentrations in sediments, fish (by bioconcentration), and biota (sorption; 40 percent organic carbon). Only sparse data are available for comparison. Leland et al. (1973) found a mean of 18.5 ppb and a maximum of 175 ppb (dry) in the sediments of southern Lake Michigan. In the model, predicted sediment concentration peaks at approximately 120 ppb (dry), but rapidly declines. The simulated sediments are representative of the average depth of Great Lakes sediment (2 percent organic carbon) and as such would be expected to be higher than Leland's mean. The model output for 1970 is 100 ppb, which is within the reported range.

For this calibrated DDT run, the losses, in moles per half year, are illustrated in figure 3. The total of the first-order processes is primarily composed of biological decomposition in sediments and water with burial and photolysis orders of magnitude lower.

The model predicts declining concentrations in all compartments. The 1980 Great Lakes Water Quality Agreement states that DDT (and its metabolites) should not exceed 3 parts per trillion (ppt) in water and 1 part per million (ppm) in fish. Data for water are not available, but the calibrated model output gives a concentration of approximately 40 ppt in 1970, declining to less than 1 ppt by the mid-1980s. Game fish, such as lake trout and coho salmon, appear to have had a higher concentration of total DDT in 1970 (15-20 ppm). Assuming the loss rate is similar to the bloater chub prediction, it would have taken until approximately 1980 to reduce those levels to the 1 ppm.

The total mass loaded into the system in order to achieve calibration was \(4.74 \times 10^{-4} \) moles (170 mg) of DDT. Since the ecosystem was approximately that of Lake Michigan, the load value can be multiplied by \(5.8 \times 10^{10} \) m\(^2\) to get an approximation of the total lake loading, 9,900 metric tons. This value corresponds to approximately 2 percent of the total DDT used in the United States (as estimated by Woodwell et al., 1971), a reasonable figure since the surface area is approximately 1 percent of the contiguous United States. By 1980, the model predicts that greater than 99 percent of the total load had been removed by decomposition, evaporation, or burial below the well-mixed zone.

DDT is rapidly being removed from the Great Lakes ecosystem through natural decomposition processes. The same cannot be said for the second contaminant analyzed in this report, polychlorinated biphenyls (PCB).

5.3 The Model Applied to PCB’s

The environmental history of PCB’s is similar in many ways to DDT. Both compounds were first developed in the 1930’s and slowly leaked into ecosystems for which they were not intended. DDT values reported prior to about 1975 are very often contaminated with PCB’s because analytical techniques had not been designed to separate them.
Figure 2.—DDT concentrations. The lines are output from a simulation using continuous summer conditions; points are data for bloater chubs and sediments from Lake Michigan.

Figure 3.—DDT loss rates (mole per half year). Microbial decomposition is the major loss.
This class of compounds, consisting of more than 200 theoretical isomers (less than one-half of which are believed to be present in any quantity in the environment), is of current concern in the Great Lakes. Lake Michigan sport fish have concentrations many times higher than the 5-ppm Food and Drug Administration level considered safe for human consumption. This report applies the calibrated DDT model to the PCB's, attempting to gain insight into their rate of removal from a Lake Michigan-like ecosystem. The National Research Council (NRC) recently published a report on PCB's in the environment (NRC, 1979) that has been used as a major source of information for this report.

Unfortunately, information on PCB's is predominantly reported in terms of commercially available mixtures, called Aroclors® in the United States. These are coded such that the last two digits represent the weight percent chlorine in the mixture (e.g., 1254 contains 54 percent chlorine, an average of five chlorines per molecule). Figure 4 illustrates the approximate composition of the Aroclors®. The modeling of these mixtures is very unsatisfying because of the range of characteristics and, consequently, environmental pathways that are "smoothed over" in this averaging process. Also, it appears that a major photodecomposition reaction is dechlorination, which produces another PCB. Improvements in ecosystem simulation models can only come when sufficient information is available to model the individual isomers.

Figure 4.---Isomeric composition of commercially available Aroclors®. Modified from NRC 11979.
The version of the model discussed in this report follows the movement of PCB mixtures 1242, 1248, 1254, and 1260. The model information is listed in table 2. The two temperatures and corresponding pairs of rate numbers and physical characteristics are designed to span a range that can be obtained from the literature. The low rates (winter conditions) are combined for the first run and the high rates (summer conditions) for the second run, producing an envelope of prediction.

Table 2.--Input parameters for PCB model

<table>
<thead>
<tr>
<th></th>
<th>1242</th>
<th>1248</th>
<th>1254</th>
<th>1260</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Molecular weight"</td>
<td>258</td>
<td>290</td>
<td>324</td>
<td>375</td>
<td>1</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>4; 20</td>
<td>4; 20</td>
<td>4; 20</td>
<td>4; 20</td>
<td>1</td>
</tr>
<tr>
<td>Solubility (g m⁻³)</td>
<td>0.20; 0.24</td>
<td>0.043; 0.054</td>
<td>0.010; 0.012</td>
<td>0.002; 0.003</td>
<td>2</td>
</tr>
<tr>
<td>Vapor pressure</td>
<td>1.5; 7.2</td>
<td>1.3; 6.3</td>
<td>0.28; 1.5</td>
<td>0.14; 0.75</td>
<td>3</td>
</tr>
<tr>
<td>Photolysis rate (0.5 yr⁻¹)</td>
<td>0.05; 0.1</td>
<td>0.03; 0.06</td>
<td>0.02; 0.04</td>
<td>0.01; 0.02</td>
<td>4</td>
</tr>
<tr>
<td>Burial rate (0.5 yr⁻¹)</td>
<td>0.005; 0.02</td>
<td>0.005; 0.02</td>
<td>0.005; 0.02</td>
<td>0.005; 0.02</td>
<td>5</td>
</tr>
<tr>
<td>Biolysis rate (0.5 yr⁻¹)</td>
<td>0.5; 1.</td>
<td>0.2; 0.4</td>
<td>0.05; 0.1</td>
<td>0.01; 0.03</td>
<td></td>
</tr>
</tbody>
</table>

1) From NRC (1979).
2) Calculated from information in NRC (1979).
3) Estimated from Simmons (personal communication).
4) From Chambers and Eadie (1981); Robbins (personal communication).
5) Calculated from Rice (personal communication); Anderson (1980), Furukawa et al. (1978). See discussion on microbial decomposition rates for dissolved contaminant reduced by 10x (Lee and Ryan, 1979).
Individual process rates are often difficult to extrapolate from the literature. Early results from GLERL's program at The University of Michigan (Simmons, personal communication) provide the most realistic numbers for photolysis. These have been subjectively combined with the results of Safe and Hutzinger (1971), Ruzo et al. (1972), Herring et al. (1972), Hutzinger et al. (1972), and Crosby and Moilanen (1973). Variations in experimental conditions and exotic experimental procedures (from the point of view of someone trying to extrapolate to an aquatic ecosystem) make objective comparisons impossible. Thus, the photolytic rate numbers in table 2 are comparatively weak at this time.

5.4 Microbial Degradation

The basic mechanisms involved in biodegradation of PCB's are different from those found for DDT. The absence of an alkyl group between the benzene ring in PCB's rules out the separation of the rings by cleaving the unconjugated bond. The typical mechanism described for PCB degradation consists of hydroxylation, followed by ring fission, of the lesser-chlorinated ring.

One of the major drawbacks to direct application of laboratory rates to natural systems is the type of organisms used in the rate-determination experiments. The first problem is the use of pure (or axenic) rather than mixed cultures. Pure cultures do not exist in nature. The use of mixed cultures provides a better simulation of an environment where many types are present simultaneously, each representing unique intrinsic metabolic capabilities. The source of the cultures is also a weak point; most exponents employ enrichment isolation techniques that alter the population structure of the original culture.

Many researchers noted that degradation rates changed with time, increasing to a maximum as time progressed. This phenomenon, known as acclimation, is not well understood in natural populations, but the occurrence of higher degradation rates for organisms from regions of chronic contamination is fairly well documented. At the present time, acclimation (and rate changes that are due to acclimation) in natural systems is an important part of the problem pertaining to the applicability of laboratory rates to rates found in the environment. From the limited evidence provided by a few experiments with simulated natural conditions, the difference in overall rates does not seem to be too substantial.

There are four identified major variables that have an effect on degradation rates: (1) temperature, (2) type of organism, (3) cell concentration, and (4) substrate (PCB) concentration.

Each type of bacterium will have an intrinsic rate of degradation specific for that organism. (See Furukawa et al., 1978; Clark et al., 1979.) The bacteria that were tested in the experiments below had similar rates in most cases. Another factor that would presumably be specific for each bacterium is the induced rate, the rate following acclimation to the substrate. As stated above, acclimation times and their variability are not known for natural systems at the present time.
Furukawa and his co-workers showed that overall degradation rates increase with increasing cell concentration. They measured changes in the rate of formation of a yellow compound, with a known absorption maximum, from a 4'-substituted biphenyl (2,5,4'-trichlorobiphenyl) as the optical density of the culture was increased. They found similar results with both of the cultures they tested: the amount of yellow compound formed increased to a maximum as the number of bacteria (optical density) increased. Boethling and Alexander (1979) showed that degradation rates increased as substrate concentration increased. While they used p-chlorobenzoate, chloroacetate, 2,4-dichlorophenoxyacetate (2,4-D), and 1-naphthyl-N-methyl-carbamate (NMC), it is reasonable to believe that the results are generally applicable to PCB biodegradation. They found that virtually no degradation occurred below a threshold concentration of 2 to 3 ng mL\(^{-1}\) for 2,4-D and NMC. At higher concentrations, degradation (complete conversion to carbon dioxide) occurred at a rate of approximately 10 percent per day. For these experiments, microbial populations were collected from a stream in New York that drains agricultural runoff and receives treated sewage upstream from the sampling site.

Another important point raised by Boethling and Alexander (1979) was that extrapolation of rate information from high to low substrate concentrations is not an accurate prediction of rates at low levels. When measuring complete degradation of 2,4-D to carbon dioxide, they found that using laboratory rates found for 22 mg mL\(^{-1}\) and 220 ng mL\(^{-1}\) to predict the rate at 2.2 ng mL\(^{-1}\) (by assuming direct proportionality with substrate concentration) yielded predicted rates that were more than one order of magnitude greater than actual laboratory rates.

Wong and Kaiser (1975) isolated bacteria from Hamilton Harbour, Lake Ontario, and determined their ability to degrade PCB's. To isolate these organisms, they used media in which Aroclors 1221, 1242, and 1254 were the sole carbon and energy source. All of their determinations were performed at 20°C. With 0.05-percent solutions, no growth occurred on Aroclor 1254, but degradation could be followed on 1221 and 1242. Wong and Kaiser found that the less-chlorinated compounds were degraded at a higher rate than the more highly chlorinated compounds. Thus, in experiments with single isomers, degradation rates could be arranged as follows: biphenyl > 2-chlorobiphenyl > 4-chlorobiphenyl. They also observed that the position of chlorination, as well as the degree of chlorination, was important in determining the rate.

The bacterial population used in the Aroclor 1221 experiment (summarized in table 3) started at approximately \(10^6\) cells mL\(^{-1}\) and reached an asymptotic maximum of \(10^7\) cells mL\(^{-1}\) within 7 days, by which time up to 55 percent of some of the gas chromatographic (GC) peaks had been degraded. This reduces to a rate of about 4 ng degraded cell\(^{-1}\) day\(^{-1}\), assuming that 55 percent of the total PCB present was degraded by \(10^4\) bacteria mL\(^{-1}\) in 500 mL of solution in 7 days.

In another experiment, two species of bacteria were tested for their ability to degrade specific PCB isomers. Furukawa and his co-workers (Furukawa et al., 1978) used Alcaligenes sp. and Acinetobacter sp. isolated from "aquatic sediment" by biphenyl and 4-chlorobiphenyl enrichment,
Table 3. *Laboratory microbial decomposition of PCB* (per day)

<table>
<thead>
<tr>
<th>Investigator</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson (1980) #7</td>
<td>--</td>
<td>0.20</td>
<td>0.13</td>
<td>0.019</td>
<td>0.009</td>
<td>1</td>
</tr>
<tr>
<td>Kaiser and Wong (1974)</td>
<td>0.055</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>Baxter et al. (1975)</td>
<td>--</td>
<td>--</td>
<td>0.062</td>
<td>0.040</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>Furukawa et al. (1978)</td>
<td>--</td>
<td>0.2-3.2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>4</td>
</tr>
</tbody>
</table>

1) Conditions: stirred, aerated, 37 gm sed L$^{-1}$ (#7), 14.7 g L$^{-1}$ (#10), mixture of individual isomers.

2) High concentrations.

3) Biphenyl added.

4) Pure cultures.

respectively. They found an increase in degradation with increased levels of bacteria. As expected, they noted that degradation occurred more readily if: (1) there were fewer chlorines in the compound and/or (2) all chlorines were on one ring. Also demonstrated were differential rates for isomers with ortho-substituted chlorines; the rates were much slower for these compounds, especially when orthochlorines occurred on both rings. Preferential ring fission was seen on the lesser-chlorinated ring.

Tucker et al. (1975) used activated sludge from a local municipal sewage treatment plant in a semi-continuous system (SCAS) to measure the disappearance of *Aroclors* 1221, 1242, and 1254 from solution. An acclimation time of 5 months for each compound tested (one per activated sludge unit) was allowed before rates were measured. Suspended solids were maintained at about 2,500 mg L$^{-1}$ and no irreversible adsorption to, or uptake by, the culture was found. It was noted that the components of 1221 that remained following degradation were the major components of 1242.
Baxter et al. (1975) performed two series of experiments on each of two species of bacteria: *Nocardiopsis* and *Pseudomonas* sp. (NCIB 10603 and NCIB 10643, respectively\(^*\)). The first series consisted of simple systems containing one, two, or three PCB isomers (some also included biphenyl), while the second was run with commercial mixtures along with excess biphenyl. Results showed that compounds with up to six chlorines could be degraded under the proper conditions (in the presence of certain other isomers and/or biphenyl, or as part of a commercial mixture). As before, the isomers with fewer chlorines were generally degraded faster.

Clark et al. (1979) experimented with a mixed culture of bacteria obtained from polluted Hudson River sediment (the "Fort Miller disposal site"). The most numerous organisms (in order of greater numbers) were *Alcaligenes domnus* and *Alcaligenea denitrificans*. Again, lower chlorinated isomers were degraded fastest, with differential rates according to the position of chlorination.

Anderson (1980) reanalyzed the data from previous experiments and calculated first-order rate constants. He also calculated first-order rate constants from his own work using sediment suspensions from Saginaw Bay and mixtures of PCB's. The averaged results are summarized in Table 3.

Intercomparison between investigators is difficult considering the variations in experimental procedures employed. However, it is clear that the rates seem to agree fairly well, except for those of Furukawa et al. Their use of pure bacterial cultures known to degrade PCB isomers led to predictably high rates.

In summary, several main points can be extracted from all of these experiments:

1. degradation decreases with increasing chlorination (or decreasing water solubility);
2. differential degradation occurs according to position of chlorination;
3. degradation increases with increased bacterial, and substrate, concentration; and
4. degradation rates (for some compounds) change with certain isomeric combinations and with the addition of acetate or biphenyl.

Several points must be kept in mind. First, all of the experiments described employed enrichment techniques of some sort, which obviously changed the populations. Second, most of the experiments were conducted at ambient temperatures (20° to 25°C). Third, the PCB concentrations used in

\(^*\)NCIB: National Collection of Industrial Bacteria
these experiments were much higher (on the order of hundreds of parts per million) than those found in freshwater systems. Current PCB levels in the Great Lakes are on the order of 10 ppt (water) to 100 ppb (sediments).

All of these indicate that natural rates should be lower than those measured in laboratory experiments. Other arguments concerning these results also center around the cultures themselves. There is little doubt that pure cultures do not exist in nature. The use of mixed natural populations would be more appropriate to obtaining rates similar to those found in nature. It is logical to assume that rates would be different in an environment in which a number of species participated in degradation.

A microbial decomposition rate can be estimated for Aroclor® mixtures from the isomer distribution illustrated in figure 4 and the biolysis rates in table 3 as follows:

\[
R_{1242} = 0.1 \times R_2 + 0.4 \times R_3 + 0.2 \times R_4 + 0.2 \times R_5 + 0.1 \times R_6,
\]

where \(R_2 \) = rate for dichlorobiphenyl (table 3), etc., and \(R_{6-9} = 0 \). Then

\[
\begin{align*}
R_{1422} &= 0.07 \text{ day}^{-1} = 12.6 \text{ (0.5 yr)}^{-1} \\
R_{1248} &= 0.02 \text{ day}^{-1} = 3.6 \text{ (0.5 yr)}^{-1} \\
R_{1254} &= 0.009 \text{ day}^{-1} = 1.6 \text{ (0.5 yr)}^{-1} \\
R_{1260} &= 0.001 \text{ day}^{-1} = 0.25 \text{ (0.5 yr)}^{-1},
\end{align*}
\]

which yield reasonable laboratory rates. The deep water and sediment temperatures of the Great Lakes range from near zero to 4°C. This will lead to a reduction of at least an order of magnitude in the rate numbers (Lee and Ryan, 1979). The rates are probably high for other reasons cited above.

Considering the caveats, I have set the high rates equal to approximately 10 percent of the laboratory values and the low rates at one-third the value of the high rates.

6. RESULTS

Model output for sediments and biota are shown in figures 5 (winter conditions) and 6 (summer conditions). The winter condition is the result of using the low rates in table 2 and is calibrated to yield a maximum concentration of approximately 10 ppm in the biota. At the same time, sediment concentrations peak at approximately 75 ppb, a value within the range reported for Lake Michigan (Konasewich et al., 1978). In order to obtain similar maximum concentrations, the summer condition run (figure 2) required 20 times the load of PCB used for the winter case.
Figure 5.—a) PCB mixtures in biota using the low rates in table 2. The numbers refer to Aroclors as described in figure 6. The 1242 load is depicted to give a feeling for the shape of the input function. The other Aroclors have the same load function but a lower (0.25x) magnitude. b) PCB mixtures in sediments for the same run.
Figure 6.—a) PCB mixtures in biota using the high rates in table 2. b) PCB mixtures in sediments for the same run.
As for the DDT simulation, year 35 is approximately equal to 1972. Figure 7 compares model output for the winter and summer cases with PCB data for Lake Michigan fish as summarized in Sonzogni et al. (1981). The model outputs can be moved up and down the page by altering the load, and the outputs will remain very nearly parallel. The agreement with bloaters and coho salmon is encouraging, considering the simplicity of the model. The lake trout data could not be simulated with a model as simple as this. Weininger (1978) proposed considerable food chain transfer from benthic organisms to lake trout and there is no food chain accumulation explicitly considered in this model.

The model outputs indicate that the loss we are presently observing in fish and sediments is primarily the lesser chlorinated isomers contained in 1242 and 1248, whereas the Aroclors® 1254 and 1260 decay much more slowly. This scenario predicts an exponential approach to a lower concentration of predominately hexachlorinated and higher isomers that will remain for a long time. The absolute value of this lower concentration strongly depends on the present concentration of highly chlorinated isomers because atmospheric transport of such isomers is small and future loads are predicted to be small.

The loss rates from the ecosystem are illustrated in figure 8. Aroclors® 1242, 1254, and 1260 are shown; 1248 is intermediate between 1242 and 1254, and was omitted for clarity. Atmospheric photolysis predominates, followed by microbial decomposition in the water and sediment. In the Great Lakes, burial is a slow process, which is slowed by bioturbation. The model considered a general condition of a 2-cm-mixed thickness with 0.5 to 1-mm accumulation per year. Assuming desorption occurs, the sediments can act as a source of stored hydrophobic contaminants for several decades.
Figure 7.--Total PCB's in Lake Michigan fish. Data are from Konsewitsch et al. (1978) and IJC (1979). The model outputs for biota from the runs illustrated in figures 1a and 2a are shown as smooth curves.
Figure 8. -- PCB loss rates (mol per half year) from the summer scenario (figure 8), a) Aroclor® 1242, b) Aroclor® 1254, and c) Aroclor® 1260.
7. ACKNOWLEDGMENTS

Partial funding for this work "as provided by the Office of Marine Pollution Assessment (OMPA). We would like to thank Dr. Bob Burns, director of OMPA's Long Range Effects Research Program for his cooperation and Dr. Andrew Robertson for useful comments in reviewing this report.
a. REFERENCES

9. Appendix--PROGRAM OUTPUT

GE1.FUGMOD3
/COPY,FUGMOD3

PROGRAM MOD2 (INPUT,OUTPUT,TAPE3,TAPES=INPUT,TAPE6)

C DIMENSION OF A, B, Al, A2 & R ARRAYS MUST BE (NT,# OF VARIABLES)
C THESE ARRAYS ARE FOR PLOTTING ROUTINES
D IENSION A1(100,10),A2(100,10),TBI0(100),TSED(100)
C IENSION R(100,10),M0 (201),N(100,9),M(100,8)
C OMMON /INDAT/ S(5,2),TK(2),MW(5),AA(5),BB(5)
C OMMON /INFO/ LC,(2),VP(5),H(5),OC(8),VI(8)
C OMMON /RATE/ PK(5,8),BK(5,8)
C OMMON /INDEX/ J,J,K,K,NC,NT,NX
C OMMON /PARK/ TM(101,5),CM(8,100,5),PK(8,100,5),CC(8,100,5)
C OMMON /LOSS/ TLOSS(5),SD(100,5),TL(100,5),BD(8,100,5),PD(8,100,5)
C OMMON /INFO/ X(5),TINPUT(100,5),TLOAD(100,5)

C DATA A
/900 * -999./
C DATA B /1000 * -999.1
C DATA R /1000 * -999.1
C DATA AI /1000 * -999.1
C DATA A2 /1000 * -999.1

C THE ABOVE PRESET THE PLOTTING ARRAYS ; DIMENSIONS MUST BE EXACT
C
C **** ALL INPUT DATA IS IN THIS SECTION ***
C
C * CALIBRATION DATA FOR DDT *
C DATA TK /275.,293. /
C DATA S /S*0.8E-3,5:1.2E-3/
C DATA MW /5*356/
C DATA PK /3.8E-3,7.2E-3,1.8E-3,3.6E-3,1.8E-3,3.6E-3,3.6E-3,0.9E-3,1.2E-3,30*0.8E-3,
C DATA BK /5*0.7*0.24,0.24,0.24,0.48,0.121/
C DATA X /5*2E-3/
C DATA UP /51.8E-7/
C
C SET UP WITH TECXTRONIX TERMINAL GRAPHICS OUTPUT
C C EQUILIBRIUM MODEL (FUGACITY) DESIGNED TO TAKE 0.5 YEAR TIME STEPS
MODEL UNITS ARE IN NOLS; EXCEPT CC(I,J,K) WHICH IS G/N3
S = SOLUBILITIES OF AROCLORS 1242-1260 AT 21 20 DEG C (G/N3)

INTERACTIVE INPUT

PRINT*,"ENTER THE NUMBER OF TIME STEPS (100 MAX)"
READ*,NT
PRINT*,"ENTER THE NUMBER OF COMPOUNDS (5 MAX)"
READ*,NX

I IS THE COMPARTMENT INDEX
J IS THE TIME STEP
K IS THE COMPOUND INDEX

R = 82E-6
TL = TOTAL LOSS OF CONTAMINANT; TM = TOTAL MASS

DESCRIBE THE ECOSYSTEM

NC = 7
NC = NUMBER OF COMARTMENTS
I = ATMOSPHERE (10 KX X 1N2)
 V(1) = 1E4
2 = EPILIMNION (25M)
 V(2) = 25
3 = HYPOLIMNION (75M)
 V(3) = 75
4 = DETRITUS (1.5PPM; 100GRC.C)
 V(4) = 1.5E-4
5 = BIOOTA (50 KG/N2)
 V(5) = 5E-6
6 = SEDIMENTS (2CM MIXED, 2% DRY C)
 V(6) = 2E-2
7 = FISH; USING A BIOCONCENTRATION FACTOR
 V(7) = 2E-7

PERCENT ORGANIC CARBON INPUT
 OC(4) = 10
 OC(5) = 40
 OC(6) = 2

DO 5 K = 1, NX
 TLOSS(K) = 0.
5 TLOAD(I,K) = 0.
DO 100 J = 1, NT
 DO 100 K = 1, NX

CALL LOAD

JJ = 1 FOR UNSTRATIFIED(WINTER; = 2 FOR SUMMER
JJ = 2 - (J-(J/2)*2)
JJ = 2

CALCULATE HENRYS CONSTANT
 H(K) = (V(P(K))/760)/S(K,JJ)/MU(K))
C CALCULATE Z VALUES FOR EACH COMPARTMENT
Z(1) = 1/(R*T(K,J))
Z(2) = 1/H(K)
Z(3) = 1/((V(K)/760) / (S(K)/1/H(K)) / 0.01)
C HYPOLNION(3) IS HELD AT 2 DEG C
DO 20 I = 4, 6
20 Z(I) = 10**(4.75 - 0.70*ALOG10(S(K,J)*1000/H(K)))*0.01*Z(I)/H(K)
C BI CONCENTRATION FACTOR CALCULATION
Z(7) = 6*10**(3.5 - 0.5*ALOG10(S(K,J)*1000/H(K)))/H(K)
Z(6) = 0.05 * Z(6)
C PARTITION COEFFICIENT IN SEDIMENTS LOWER BY FACTOR OF 20
C CALCULATE THE FUGACITY
SUMF = 0.
DO 30 I = 1, NC
30 SUMF = SUMF + V(I)*Z(I)
F = TM(I,J,K)/SUMF
C CALCULATE THE EQUILIBRIUM DISTRIBUTION
CM(I,J,K) = F*V(I)*Z(I)
C CALCULATE COMPARTMENT CONCENTRATIONS
DO 40 I = 1, NC
40 CC(I,J,K) = CM(I,J,K)*MU(K)/V(I)
C C
C CALL DECAY
C 100 CONTINUE
C C
C CALL OUTPUT
C C
C FILLING ARRAYS FDN, PLOT
DO 500 K = 1, NX
C FILLING A ARRAY ; COMPARTMENT CONCENTRATIONS
DO 250 J = 1, NT
A(J,1) = J
IF(TINPUT(J,K) .GT. 0.) A(J,2) = ALOG10(TINPUT(J,K))
DO 250 I = 1, NC
250 IF(CC(I,J,K) .GT. 0.) A(J,(I+2)) = ALOG10(CC(I,J,K))
C C
C FILLING R ARRAY ; CONTAM INENT LOSSES(MOLS)
DO 280 J = 1, NF
R(J,1) = J
IF(SD(J,K) .GT. 0.) R(J,2) = ALOG10(SD(J,K))
DO 280 I = 1, 2
280 IF(PD(I,J,K) .GT. 0.) R(J,(I+2)) = ALOG10(PD(I,J,K))
DO 270 I = 2, 6
270 IF(BD(I,J,K) .GT. 0.) R(J,(I+3)) = ALOG10(BD(I,J,K))
280 IF(TL(I,J,K) .GT. 0.) R(J,10) = ALOG10(TL(I,J,K))
C C
C 300 CONTINUE
C FILLING B ARRAY
C
C FILLING AI ARRAY; TOTAL CONC IN BIOTA
C
DO 400 J = 1, NT
 TBIOD(J) = 0.
 AI(J,1) = J
 DO 401 K = 1, NX
 401 IF(TINPUT(J,K) .GT. 0.) AI(J,K+1) = ALOG10(NW(K) * TINPUT(J,K))
DO 400 K = 1, NX
 TBIOD(J) = TBIOD(J) + CC(5,J,K)
 IF(CC(5,J,K) .GT. 0.) AI(J,K+5) = ALOG10(CC(5,J,K))

DO 500 J = 1, NT
 TSED(J) = 0.
 A2(J,1) = J
 DO 501 K = 1, NX
 501 IF(TINPUT(J,K) .GT. 0.) A2(J,K+1) = ALOG10(NW(K) * TINPUT(J,K))
DO 500 K = 1, NX
 TSED(J) = TSED(J) + CC(6,J,K)
 IF(CC(6,J,K) .GT. 0.) A2(J,K+6) = ALOG10(CC(6,J,K))

C C CURITE ARRAY(J,VARIABLE) FOR TECKTRONIX PLOT
C OUTPUT WRITTEN ON FILE TAPE6=NOW
C TO SUBMIT, REPLACE,TAPE6=NOW, THEN CALL,SUB(F=TEKPLT)
C
REWIND 6
DO 600 J = 1, NT
 DO 599 I = 1, 10
 599 IF(A(J,I) .LT. -2.) A(J,I) = -2.
 DO 600 K = 1, NT
 WRITE(6) (A(J,1),A(J,2),A(J,4),A(J,5),A(J,6),A(J,8),A(J,9))
C
STOP
END
SUBROUTINE DECAY

COMMON /RATE/ PK(S,E),BK(S,E)
COMMON /BAL/ THERE(100,5)
COMMON /INDAT/ S(5,2),TK(2),NU(5),AA(5),BK(5)
COMMON /LOSS/ TLOSS(5),SH(100,5),TL(100,5),BD(8,100,5),PD(8,100,5)
COMMON /PARN/ TH(101,5),CH(8,100,5),PM(8,100,5),CC(8,100,5)
COMMON /INDEX/ I,J,K,JJ,NC,NT,NX
COMMON /INFO/ LC,Z,B),UP(S),N(5),OC(G),U(B)

C PK & BK ARE PHOTOLYTIC & BIOLOGICAL DECOMPOSITION RATES(CMPB,CMPT)
C UNITS PK(0.5YR-1), BK(HD/K3/0.5YR)
C ASSUMPTIONS IN BIO CALC; MICROBIAL DENSITY = 20CELLS/ML & 1E6/ML
C IN WATER & SEDIMENTS RESPECTIVELY
C
C CALCULATE PHOTOLYTIC DECAY
DO 20 I = 1,NC
PR REDUCES UNI M AT RATES BY 1/2
PR = 1.0
IF(JJ.EQ.1)PR = 0.5
PD(I,J,K) = CH(I,J,K) * (PR * PK(I,J))
20 IF(PD(I,J,K).GT.CH(CH(I,J,K)) PD(I,J,K) = CH(I,J,K)
C NECESSARY FOR MASS BALANCE
C
C CALCULATE BIOLOGICAL DECAY
DO 10 I = 1,NC
CLOUT = 1.0
IF(JJ.EQ.1)CLOUT = 0.25
C THAT REDUCES UNI M AT RATES BY A FACTOR OF 4
VIA BLE = 1
C FRACTION OF VIA BLE BACTERIA
BD(I,J,K) = VIA BLE * CLOUT * BK(K,I) * CM(I,J,K)
10 IF(BD(I,J,K).GT.(CM(1,J,K) - PD(I,J,K))) BD(I,J,K) = CM(1,J,K) - PD(I,J,K)
C NECESSARY FOR MASS BALANCE
C
C CALCULATE THE NEU CONCENTRATION
DO 30 I = 1,NC
CM(I,J,K) = CH(I,J,K) - (BD(I,J,K) + PD(I,J,K))
IF(CH(I,J,K).LE.0.) CM(I,J,K) = 0.
30 CC(I,J,K) = CM(I,J,K) * NU(K) / VI(I)
C
C CALCULATE SEDIMENT ALTERATION; RECEIVES 50% OF DETRITUS PER TIME
C STEP; THICKNESS REMAINS CONSTANT
SD(1,J,K) = 0.375 * CM(1,J,K) / 1100.
CM(6,J,K) = 99.625 * CM(6,J,K) / 100. + 0.5 * CM(4,J,K)
CM(4,J,K) = 0.5 * CM(4,J,K)
C SD = MASS (HDL) BURIED IN DEEP SEDIMENTS
CC(6,J,K) = CM(6,J,K) * NU(K) / VI(6)
C
29
C CALCULATE NEW TOTAL MASS

TH(J,K) = 0.
TL(J,K) = 0.
DO 40 I = 1, NC
 TM(J,K) = TM(J,K) + CM(I,J,K)
40 TL(J,K) = TL(J,K) + BD(I,J,K) * PB(I,J,K)
TL(J,K) = TL(J,K) + SD(J,K)
C TL = MASS OF REMOVED CONTAMINANT
C THERE = MASS IN SYSTEM + SYSTEM LOSSES
C
DO 44 I = 1, NC
44 TM(I,J,K) = 100. * CM(I,J,K)/TM(J,K)
C TM IS THE PERCENTAGE DISTRIBUTION
C
C SUMMING UP LOSSES
TLOSS(K) = TLOSS(K) + TL(J,K)
THERE(J,K) = TM(J,K) + TLOSS(K)
RETURN
END
EOI ENCOUNTERED.

/GET,LOAD2
/COPY,LOAD2
SUBROUTINE LOAD
COMMON /INTO/ X(5), TINPUT(100,5), TLOAD(100,5)
COMMON /INDEX/ I,J,K, JJ, NC, NT, NX
COMMON /PARM/ TH(101,5), CH(100,5), PH(100,5), CC(100,5)
COMMON /INDAT/ S(5,2), TK(2), NW(5), AM(5), BD(5)
C
C ROUTINE INCREASES TOTAL COMPOUND MASS EACH TIME STEP
TINPUT(J,K) = (X(K) / NW(K) * (1.2E-3*J*J - 1.6E-5*J*J*J))
IF(TINPUT(J,K) .LE. 0.) TINPUT(J,K) = 0.
IF(J.EQ.1)6,7
b TM(1,K) = TINPUT(1,K)
GO TO 8
7 TM(J,K) = TM(J-1,K) + TINPUT(J,K)
8 CONTINUE
C
IF(J.EQ.1) TLOAD(J,K) = TINPUT(1,K) + TM(1,K)
IF(J.GT.1) TLOAD(J,K) = TLOAD(J-1,K) + TINPUT(J,K)
C
RETURN
END
EOI ENCOUNTERED.
SUBROUTINE OUTPUT
CONKON
TLSS, SD100, TL100, SD100, BD8, PD8
COKON
BAL
THERE(101,ST
COKON
PART!
T101, CK100, PN8, CC5
COKON
INDEX
I, J, K, NC, NT, NX
COKON
INTO
X100, TINPUT100, TL100
COKON
INFO
LC, Z(8), VP(5), H(5), OC(8), V(8)
C
C CONTROLS PROGRAM OUTPUT FOR FUGHOD
C
JSKP = (NT - 2)/2
DO 100 J = 1, NT, JSKP
PRINT 1, J
1 FORMAT(///,"TIME STEP =",14,/) DO 100 K = 1, NX
PRINT 7
7 FORMAT(/,20X,"SYSTEM MASS BALANCE (MOLS)"
PRINT 2, TINPUT(J,K), TL(J,K)
1 FORMAT(,"STEP LOAD =",E8.3," TOTAL MASS IN SYSTEM =",E8.3,
1" STEP LOSS =",E8.3)
PRINT 15, TLOAD(J,K), THERE(J,K)
15 FORMAT("TO DATE INPUT =",E12.4,4X,"AMT TRACED =",E12.4,/) PRINT 8
8 FORMAT("INDICES CONTAINMENT DISTRIBUTION",6X,"LOSS RATES(MOL/
1"0.5YR)"
PRINT 3
3 FORMAT(" I K",4X,"CM(MOL)",3X,"PH(I)",5X,"CC(PPM)",3X,"BDI",7X,
1"PHOTO",5X,"SED",8X,"Z",")
DO 91 I = 1, NC
SED = 0.
IF(I.EQ.NC) SED = SD(J,K)
1 SED, Z(I)
4 FORMAT(213,3E10.2)
91 CONTINUE
100 CONTINUE
RETURN
END
EOI ENCONTRITED
GET, TEKPLT
COPY, TEKPLT
JOB
NOSEQ
PCBPLOT, T170.
ACCOUNT, GL14, VERDA, GERL.
CHARGE, RJ, 1766212.
FTN, R=2.
GET, TAPE5=NOW.
CALL, CPLO.
REPLACE, TAPE2=PLRT.
GOTO, 1.
EXIT.
1, GET, SAVRSLT/UN=GLERL.
DAYFILE, DAY.
REPLACE, DAY.
CALL, SAVRSLT(RESULT=BJESAV)
/EDR

PROGRAM PCB(INPUT, OUTPUT, TAPE5, TAPE2)
DIMENSION A(100,10), T(100)
C READ DATA 1ST VARIABLE IS INDEPENDENT
REPLACE 5
C
C NPLT = NUMBER OF PLOTS
C
C NP = NUMBER OF DEPENDENT VARIABLES ON SINGLE GRAPH
NP = 7
C
C DO 1 J = 1, 100
1 READ(S) (AL(J,I), I=1,NP)
C LOOP IS THE NUMBER OF PARS BEING PLOTTED
C RESTRUCTURING ARRAYS
T(1) = 0.
 DO 10 J = 1, 99
10 T(J+1) = FLOAT(J) / 2.
C
32
CALL ID("BJEN",100)
CALL TEKTRN("AUTOHC=YES,BAUD=2400,CENTER,BATCH,TERM=4014,END*",
1100)
CALL BGNPL(1)
CALL NOCHEK
CALL TITLE1H,-1,"TIME(YEARS)",100,"LOG CONCENTRATION(PPM)",
1100.10..7.)
CALL GRAF(0.,5.,50.,-2.,5.,2.)
CALL MESSAG("DDT CONCENTRATIONS;WINTER CONDITIONS",38,2.,6.5)
C
DO 20 I = 1,NP
IF(I.EQ.2) CALL DOT
IF(I.EQ.3) CALL CHNDOT
IF(I.EQ.4) CALL DASH
IF(I.EQ.5) CALL CHNDSN
IF(I.EQ.6) CALL RESET("CHNDSH")
20 CALL CURVE1T,A(I,I),100,0)
CALL ENDPL(-1)
CALL DONEPL
STOP
END
EOI ENCOUNTED.
/GET, SUBS2
/COPY, SUBS2
READP LOAD2 DECAY2 OUTPUT2
EOI ENCLOSED.

/GRT, RUN3
/COPY, RUN3
GET, FUGMOD3.
GET, SUBS2.
XEDIT, FUGMOD3, I=SUBS2.
REWIND, LG0.
FTN, I=FUGMOD3, L=0, PND.
GET, FUGMOD3.
LG0 CP=T.
COPY, OUTPUT
EOI ENCLOSED.